Seip Britta, Innis C Axel
University of Bordeaux, Institut Européen de Chimie et Biologie, 33607 Pessac, France; Institut National de la Santé et de la Recherche Médicale, Inserm U1212, 33076 Bordeaux, France; Centre National de la Recherche Scientifique, CNRS UMR 5320, 33076 Bordeaux, France.
University of Bordeaux, Institut Européen de Chimie et Biologie, 33607 Pessac, France; Institut National de la Santé et de la Recherche Médicale, Inserm U1212, 33076 Bordeaux, France; Centre National de la Recherche Scientifique, CNRS UMR 5320, 33076 Bordeaux, France.
J Mol Biol. 2016 May 22;428(10 Pt B):2217-27. doi: 10.1016/j.jmb.2016.04.019. Epub 2016 Apr 21.
In order to colonize a niche and compete for scarce resources, microorganisms have evolved means to adjust the expression levels of their biosynthetic enzymes in response to the changing levels of metabolites available to them. To do so, they often rely on transcription factors or structured RNAs that directly sense the concentration of metabolites and turn genes on or off accordingly. In some instances, however, a metabolite can be sensed by an actively translating ribosome bearing a nascent polypeptide whose specific amino acid sequence interferes with translation. These “arrest peptides” lead to the formation of stalled ribosome nascent chain complexes on the mRNA that can regulate the expression of downstream genes through transcriptional or translational mechanisms. Although this process was discovered over three and a half decades ago, the extent to which arrest peptides regulate gene expression in response to cell metabolites is unknown. Here, we examine the physical constraints imposed by the ribosome on peptide-mediated ligand sensing and review attempts to assess the diversity of arrest peptides to date. In addition, we outline a possible way forward to establish how pervasive metabolite sensing by arrest peptides is in nature.
为了在特定生态位定殖并竞争稀缺资源,微生物已经进化出相应机制,可根据自身可利用代谢物水平的变化来调整其生物合成酶的表达水平。为此,它们通常依赖转录因子或结构化RNA,这些因子或RNA能直接感知代谢物浓度并相应地开启或关闭基因。然而,在某些情况下,代谢物可被带有新生多肽的正在进行翻译的核糖体所感知,该新生多肽的特定氨基酸序列会干扰翻译过程。这些“阻遏肽”会导致在mRNA上形成停滞的核糖体新生链复合物,该复合物可通过转录或翻译机制调节下游基因的表达。尽管这一过程在三十多年前就已被发现,但阻遏肽响应细胞代谢物调节基因表达的程度尚不清楚。在此,我们研究核糖体对肽介导的配体感知所施加的物理限制,并回顾迄今为止评估阻遏肽多样性的尝试。此外,我们概述了一种可能的前进方向,以确定阻遏肽对代谢物的感知在自然界中普遍存在的程度。