Suppr超能文献

在 ZnO 纳米粒子修饰的石墨烯杂化材料内的电荷转移和表面缺陷修复。

Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials.

机构信息

Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany and Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany.

Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany.

出版信息

Nanoscale. 2016 May 5;8(18):9682-7. doi: 10.1039/c6nr00393a.

Abstract

To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL) investigations on bare ZnO NPs, GO-ZnO and TrGO-ZnO hybrid materials, we found that several physical phenomena were occurring when ZnO NPs were hybridized with GO and TrGO. The electrons trapped in Zn vacancy defects (VZn(-)) within the core of ZnO NPs vanished by transfer to GO and TrGO in the hybrid materials, thus leading to the disappearance of the core signals in the EPR spectra of ZnO NPs. The thiol groups of TrGO and sulfur can effectively "heal" the oxygen vacancy (VO(+)) related surface defects of ZnO NPs while oxygen-containing functionalities have low healing ability at a synthesis temperature of 100 °C. Photoexcited electron transfer from the conduction band of ZnO NPs to graphene leads to photoluminescence (PL) quenching of near band gap emission (NBE) of both GO-ZnO and TrGO-ZnO. Simultaneously, electron transfer from graphene to defect states of ZnO NPs is the origin of enhanced green defect emission from GO-ZnO. This observation is consistent with the energy level diagram model of hybrid materials.

摘要

为了利用石墨烯和氧化锌纳米粒子(NPs)的独特性质来开发新的应用,石墨烯-氧化锌纳米粒子杂化材料的发展引起了极大的关注,并且是正在进行的研究的主题。在这项工作中,通过新颖的自组装工艺制备了氧化石墨烯-氧化锌(GO-ZnO)和巯基功能化还原氧化石墨烯-氧化锌(TrGO-ZnO)纳米杂化材料。基于对裸 ZnO NPs、GO-ZnO 和 TrGO-ZnO 杂化材料的电子顺磁共振(EPR)和光致发光(PL)研究,我们发现当 ZnO NPs 与 GO 和 TrGO 杂化时,会发生几种物理现象。在 ZnO NPs 核心内的 Zn 空位缺陷(VZn(-))中捕获的电子通过转移到杂化材料中的 GO 和 TrGO 而消失,从而导致 ZnO NPs 的 EPR 光谱中核心信号的消失。TrGO 和硫的巯基基团可以有效地“修复” ZnO NPs 表面的氧空位(VO(+))相关缺陷,而含氧官能团在 100°C 的合成温度下修复能力较低。光激发电子从 ZnO NPs 的导带转移到石墨烯导致 GO-ZnO 和 TrGO-ZnO 的近带隙发射(NBE)的光致发光(PL)猝灭。同时,电子从石墨烯转移到 ZnO NPs 的缺陷态是 GO-ZnO 中增强的绿色缺陷发射的起源。这一观察结果与杂化材料的能级图模型一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验