Suppr超能文献

g-C3 N4 /C2 N纳米复合材料:一种基于g-C3 N4的具有更高能量效率的光解水催化剂。

The g-C3 N4 /C2 N Nanocomposite: A g-C3 N4 -Based Water-Splitting Photocatalyst with Enhanced Energy Efficiency.

作者信息

Wang Huimin, Li Xingxing, Yang Jinlong

机构信息

Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China.

Synergetic Innovation Center of Quantum Information and, Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China.

出版信息

Chemphyschem. 2016 Jul 4;17(13):2100-4. doi: 10.1002/cphc.201600209. Epub 2016 Apr 25.

Abstract

Water-splitting photocatalysts with good energy efficiency are highly desirable, among which metal-free graphitic carbon nitride (g-C3 N4 ) is considered to be very promising and has been intensively studied in recent years. However, its practical application is hindered by the relatively low efficiencies of visible-light absorption and electron-hole separation. Herein, based on first-principles calculations, it is predicted that, by forming nanocomposites with another carbon nitride (C2 N), the energy efficiency of g-C3 N4 can be significantly improved. On one hand, C2 N has a wide, strong optical absorption in the visible-light region, which acts as a photosensitizer and enhances the photoabsorption efficiency of the composite photocatalyst. On the other hand, C2 N forms a type II heterojunction with g-C3 N4 , which leads to efficient separation of photogenerated electron-hole pairs through the chemical potential difference between the two components. These results provide a potential route to achieve highly efficient metal-free photocatalysts for water splitting.

摘要

具有良好能量效率的光解水催化剂是非常理想的,其中无金属的石墨相氮化碳(g-C3N4)被认为非常有前景,并且近年来已得到深入研究。然而,其实际应用受到可见光吸收和电子-空穴分离效率相对较低的阻碍。在此,基于第一性原理计算预测,通过与另一种氮化碳(C2N)形成纳米复合材料,g-C3N4的能量效率可得到显著提高。一方面,C2N在可见光区域具有宽且强的光吸收,它作为光敏剂并提高了复合光催化剂的光吸收效率。另一方面,C2N与g-C3N4形成II型异质结,这通过两种组分之间的化学势差导致光生电子-空穴对的有效分离。这些结果为实现用于光解水的高效无金属光催化剂提供了一条潜在途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验