Qin Dong-Dong, Quan Jing-Jing, Duan Shi-Fang, San Martin Jovan, Lin Yixiong, Zhu Xiaolin, Yao Xiao-Qiang, Su Jin-Zhan, Rodríguez-Gutiérrez Ingrid, Tao Chun-Lan, Yan Yong
College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China.
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P.R. China.
ChemSusChem. 2019 Feb 21;12(4):898-907. doi: 10.1002/cssc.201802382. Epub 2019 Jan 25.
Graphitic carbon nitride (g-C N ) has been widely explored as a photocatalyst for water splitting. The anodic water oxidation reaction (WOR) remains a major obstacle for such processes, with issues such as low surface area of g-C N , poor light absorption, and low charge-transfer efficiency. In this work, such longtime concerns have been partially addressed with band gap and surface engineering of nanostructured graphitic carbon nitride (g-C N ). Specifically, surface area and charge-transfer efficiency are significantly enhanced through architecting g-C N on nanorod TiO to avoid aggregation of layered g-C N . Moreover, a simple phosphide gas treatment of TiO /g-C N configuration not only narrows the band gap of g-C N by 0.57 eV shifting it into visible range but also generates in situ a metal phosphide (M=Fe, Cu) water oxidation cocatalyst. This TiO /g-C N /FeP configuration significantly improves charge separation and transfer capability. As a result, our non-noble-metal photoelectrochemical system yields outstanding visible light (>420 nm) photocurrent: approximately 0.3 mA cm at 1.23 V and 1.1 mA cm at 2.0 V versus RHE, which is the highest for a g-C N -based photoanode. It is expected that the TiO /g-C N /FeP configuration synthesized by a simple phosphide gas treatment will provide new insight for producing robust g-C N for water oxidation.
石墨相氮化碳(g-C₃N₄)作为一种用于水分解的光催化剂已得到广泛研究。阳极水氧化反应(WOR)仍然是此类过程的主要障碍,存在诸如g-C₃N₄表面积低、光吸收差以及电荷转移效率低等问题。在这项工作中,通过对纳米结构的石墨相氮化碳(g-C₃N₄)进行带隙和表面工程,部分解决了这些长期存在的问题。具体而言,通过在纳米棒TiO₂上构建g-C₃N₄以避免层状g-C₃N₄的聚集,显著提高了表面积和电荷转移效率。此外,对TiO₂/g-C₃N₄结构进行简单的磷化物气体处理,不仅使g-C₃N₄的带隙缩小0.57 eV并将其转移到可见光范围内,还原位生成了金属磷化物(M = Fe、Cu)水氧化助催化剂。这种TiO₂/g-C₃N₄/FeP结构显著提高了电荷分离和转移能力。结果,我们的非贵金属光电化学系统产生了出色的可见光(>420 nm)光电流:相对于可逆氢电极(RHE),在1.23 V时约为0.3 mA cm⁻²,在2.0 V时为1.1 mA cm⁻²,这是基于g-C₃N₄的光阳极中的最高值。预计通过简单的磷化物气体处理合成的TiO₂/g-C₃N₄/FeP结构将为生产用于水氧化的稳定g-C₃N₄提供新的见解。