Suppr超能文献

自适应DNA链置换网络中的监督学习

Supervised Learning in Adaptive DNA Strand Displacement Networks.

作者信息

Lakin Matthew R, Stefanovic Darko

机构信息

Department of Chemical & Biological Engineering, ‡Department of Computer Science, and §Center for Biomedical Engineering, University of New Mexico , Albuquerque, New Mexico 87131, United States.

出版信息

ACS Synth Biol. 2016 Aug 19;5(8):885-97. doi: 10.1021/acssynbio.6b00009. Epub 2016 May 11.

Abstract

The development of engineered biochemical circuits that exhibit adaptive behavior is a key goal of synthetic biology and molecular computing. Such circuits could be used for long-term monitoring and control of biochemical systems, for instance, to prevent disease or to enable the development of artificial life. In this article, we present a framework for developing adaptive molecular circuits using buffered DNA strand displacement networks, which extend existing DNA strand displacement circuit architectures to enable straightforward storage and modification of behavioral parameters. As a proof of concept, we use this framework to design and simulate a DNA circuit for supervised learning of a class of linear functions by stochastic gradient descent. This work highlights the potential of buffered DNA strand displacement as a powerful circuit architecture for implementing adaptive molecular systems.

摘要

开发具有自适应行为的工程化生化电路是合成生物学和分子计算的一个关键目标。此类电路可用于生化系统的长期监测和控制,例如预防疾病或推动人工生命的发展。在本文中,我们提出了一个使用缓冲DNA链置换网络开发自适应分子电路的框架,该网络扩展了现有的DNA链置换电路架构,以实现行为参数的直接存储和修改。作为概念验证,我们使用此框架设计并模拟了一个通过随机梯度下降对一类线性函数进行监督学习的DNA电路。这项工作突出了缓冲DNA链置换作为一种强大的电路架构用于实现自适应分子系统的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验