School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
J Am Chem Soc. 2022 Jun 1;144(21):9479-9488. doi: 10.1021/jacs.2c03258. Epub 2022 May 22.
DNA logic circuits are based on DNA molecular programming that implements specific algorithms using dynamic reaction networks. Particularly, DNA adder circuits are key building blocks for performing digital computation. Nevertheless, existing circuit architectures are limited by scalability for implementing multi-bit adder due to the number of required gates and strands. Here, we develop a compact-yet-efficient architecture using cooperative strand displacement reactions (cSDRs) to construct DNA full adder. By exploiting a parity-check algorithm, double-logic XOR-AND gates are constructed with a single set of double-stranded molecule. One-bit full adder is implemented with three gates containing 13 strands, with up to 90% reduction in strand complexity compared to conventional circuit designs. Using this architecture and a transmitter on magnetic beads, we demonstrate DNA implementation of 6-bit adder on a scale comparable to that of a classic electronic full adder chip, providing the potential for application-specific circuit customization for scalable digital computing with minimal reactions.
DNA 逻辑电路基于 DNA 分子编程,使用动态反应网络实现特定算法。特别是,DNA 加法器电路是执行数字计算的关键构建块。然而,由于所需门和链的数量,现有的电路架构在实现多位加法器方面受到限制。在这里,我们使用协同链置换反应 (cSDR) 开发了一种紧凑而高效的架构,用于构建 DNA 全加器。通过利用奇偶校验算法,用一组双链分子构建了双逻辑异或与门。一位全加器由三个包含 13 个链的门实现,与传统电路设计相比,链的复杂性降低了 90%。使用该架构和磁珠上的发射器,我们在与经典电子全加器芯片相当的规模上展示了 6 位加法器的 DNA 实现,为可扩展数字计算提供了特定于应用的电路定制潜力,最小化了反应数量。