Suppr超能文献

地球地幔的固化不可避免地导致了一个底部岩浆海洋的形成。

Solidification of Earth's mantle led inevitably to a basal magma ocean.

作者信息

Boukaré Charles-Édouard, Badro James, Samuel Henri

机构信息

Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France.

Department of Physics and Astronomy, York University, Toronto, Ontario, Canada.

出版信息

Nature. 2025 Apr;640(8057):114-119. doi: 10.1038/s41586-025-08701-z. Epub 2025 Mar 26.

Abstract

One of the main interpretations of deep-rooted geophysical structures in the mantle is that they stem from the top-down solidification of the primitive basal magma ocean of Earth above the core. However, it remains debated whether solids first formed at the bottom of the mantle, solidifying upward, or above the melts, solidifying downward. Here we show that gravitational segregation of dense, iron-rich melts from lighter, iron-poor solids drives mantle evolution, regardless of where melting curves and geotherms intersect. This process results in the accumulation of iron-oxide-rich melts above the core, forming a basal magma ocean. We numerically model mantle solidification using a new multiphase fluid dynamics approach that integrates melting phase relations and geochemical models. This enables estimating the compositional signature and spatial distribution of primordial geochemical reservoirs, which may be directly linked to the isotopic anomalies measured in Archean rocks. We find that a substantial amount of solids is produced at the surface of the planet, not at depth, injecting geochemical signatures of shallow silicate fractionation in the deep mantle. This work could serve as a foundation for re-examining the intricate interplay between mantle dynamics, petrology and geochemistry during the first thousand million years of the evolution of rocky planets.

摘要

地幔中根深蒂固的地球物理结构的主要解释之一是,它们源于地核上方原始基性岩浆海洋的自上而下凝固。然而,关于固体是首先在地幔底部形成并向上凝固,还是在熔体上方形成并向下凝固,仍存在争议。在这里,我们表明,密度较大、富含铁的熔体与较轻、贫铁的固体之间的重力分异驱动了地幔演化,而不管熔化曲线和地热曲线在哪里相交。这一过程导致富含铁氧化物的熔体在地核上方聚集,形成一个基性岩浆海洋。我们使用一种新的多相流体动力学方法对幔体凝固进行数值模拟,该方法整合了熔化相关系和地球化学模型。这使得我们能够估计原始地球化学储库的成分特征和空间分布,而这些可能与太古宙岩石中测得的同位素异常直接相关。我们发现,大量固体是在行星表面而非深处产生的,将浅部硅酸盐分馏的地球化学特征注入到深部地幔中。这项工作可以作为重新审视岩石行星演化最初十亿年期间地幔动力学、岩石学和地球化学之间复杂相互作用的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ed/11964929/f7c4dadbf783/41586_2025_8701_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验