Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187, Dresden, Germany.
Angew Chem Int Ed Engl. 2016 Jun 6;55(24):6826-41. doi: 10.1002/anie.201508381. Epub 2016 Apr 25.
The coupled transport properties required to create an efficient thermoelectric material necessitates a thorough understanding of the relationship between the chemistry and physics in a solid. We approach thermoelectric material design using the chemical intuition provided by molecular orbital diagrams, tight binding theory, and a classic understanding of bond strength. Concepts such as electronegativity, band width, orbital overlap, bond energy, and bond length are used to explain trends in electronic properties such as the magnitude and temperature dependence of band gap, carrier effective mass, and band degeneracy and convergence. The lattice thermal conductivity is discussed in relation to the crystal structure and bond strength, with emphasis on the importance of bond length. We provide an overview of how symmetry and bonding strength affect electron and phonon transport in solids, and how altering these properties may be used in strategies to improve thermoelectric performance.
为了创造高效的热电材料,需要深入了解固体中的化学和物理之间的关系。我们使用分子轨道图、紧束缚理论和对键强度的经典理解提供的化学直觉来进行热电材料设计。电负性、带宽、轨道重叠、键能和键长等概念用于解释电子性质的趋势,例如带隙的大小和温度依赖性、载流子有效质量以及带隙的简并和收敛。晶格热导率与晶体结构和键强度相关联进行讨论,重点强调键长的重要性。我们概述了对称性和键强度如何影响固体中的电子和声子输运,以及改变这些性质如何用于改善热电性能的策略。