Li Yuhui, Wan Guolin, Zhu Yongqian, Yang Jingyu, Zhang Yan-Fang, Pan Jinbo, Du Shixuan
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China.
Nat Commun. 2024 Nov 4;15(1):9527. doi: 10.1038/s41467-024-53864-4.
Van der Waals (vdW) dielectrics are promising for enhancing the performance of nanoscale field-effect transistors (FETs) based on two-dimensional (2D) semiconductors due to their clean interfaces. Ideal vdW dielectrics for 2D FETs require high dielectric constants and proper band alignment with 2D semiconductors. However, high-quality dielectrics remain scarce. Here, we employed a topology-scale algorithm to screen vdW materials consisting of zero-dimensional (0D), one-dimensional (1D), and 2D motifs from Materials Project database. High-throughput first-principles calculations yielded bandgaps and dielectric properties of 189 0D, 81 1D and 252 2D vdW materials. Among which, 9 highly promising dielectric candidates are suitable for MoS-based FETs. Element prevalence analysis indicates that materials containing strongly electronegative anions and heavy cations are more likely to be promising dielectrics. Moreover, we developed a high-accuracy two-step machine learning (ML) classifier for screening dielectrics. Implementing active learning framework, we successfully identified 49 additional promising vdW dielectrics. This work provides a rich candidate list of vdW dielectrics along with a high-accuracy ML screening model, facilitating future development of 2D FETs.
范德华(vdW)电介质因其界面纯净,有望提升基于二维(2D)半导体的纳米级场效应晶体管(FET)的性能。用于二维场效应晶体管的理想范德华电介质需要高介电常数以及与二维半导体适当的能带排列。然而,高质量的电介质仍然稀缺。在此,我们采用一种拓扑尺度算法,从材料项目数据库中筛选由零维(0D)、一维(1D)和二维基序组成的范德华材料。高通量第一性原理计算得出了189种零维、81种一维和252种二维范德华材料的带隙和介电特性。其中,9种极具潜力的电介质候选材料适用于基于MoS的场效应晶体管。元素丰度分析表明,含有强电负性阴离子和重阳离子的材料更有可能成为有前景的电介质。此外,我们开发了一种用于筛选电介质的高精度两步机器学习(ML)分类器。通过实施主动学习框架,我们成功识别出另外49种有前景的范德华电介质。这项工作提供了一份丰富的范德华电介质候选材料清单以及一个高精度的机器学习筛选模型,有助于二维场效应晶体管的未来发展。