Center for Cognitive Brain Imaging, Psychology Department, Carnegie Mellon University
Center for Cognitive Brain Imaging, Psychology Department, Carnegie Mellon University.
Psychol Sci. 2016 Jun;27(6):904-13. doi: 10.1177/0956797616641941. Epub 2016 Apr 25.
We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems.
我们使用功能磁共振成像(fMRI)来评估初级、高级和主修物理或工程专业的研究生对物理概念(动量、能量等)的神经表示。我们的目标是确定这些表示的潜在神经维度。通过使用因子分析来减少激活的维度数量,我们得到了四个与物理相关的因子,这些因子映射到了一组体素上。这四个因子可以解释为因果运动可视化、周期性、代数形式和能量流。使用多体素分类器,通过 fMRI 特征可以识别出个体概念,平均准确率为.75。此外,参与者对物理的神经表示具有共性;一个基于除一个参与者之外的所有数据进行训练的分类器可以识别出被排除参与者的概念(在所有九个参与者样本中平均准确率为.71)。研究结果表明,在教育环境中获得的抽象科学概念会引起可识别和共同的激活模式,这表明科学教育利用内在的、重新利用的大脑系统来构建抽象知识。