Lui Hansen, Zhang Jiasheng, Makinson Stefanie R, Cahill Michelle K, Kelley Kevin W, Huang Hsin-Yi, Shang Yulei, Oldham Michael C, Martens Lauren Herl, Gao Fuying, Coppola Giovanni, Sloan Steven A, Hsieh Christine L, Kim Charles C, Bigio Eileen H, Weintraub Sandra, Mesulam Marek-Marsel, Rademakers Rosa, Mackenzie Ian R, Seeley William W, Karydas Anna, Miller Bruce L, Borroni Barbara, Ghidoni Roberta, Farese Robert V, Paz Jeanne T, Barres Ben A, Huang Eric J
Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.
Gladstone Institute of Neurological Disease and Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
Cell. 2016 May 5;165(4):921-35. doi: 10.1016/j.cell.2016.04.001. Epub 2016 Apr 21.
Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.
小胶质细胞维持大脑内环境稳定,但异常的小胶质细胞激活是否会导致神经退行性变仍存在争议。在此,我们利用转录组分析来证明额颞叶痴呆(FTD)基因颗粒蛋白前体(Grn)的缺陷会导致小胶质细胞中溶酶体和固有免疫基因随年龄增长而逐渐上调,补体产生增加,以及突触修剪增强。在衰老过程中,Grn基因敲除(Grn(-/-))小鼠表现出小胶质细胞大量浸润,并优先消除腹侧丘脑的抑制性突触,这导致丘脑皮质回路兴奋性过高以及出现类似强迫症(OCD)的梳理行为。值得注意的是,删除C1qa基因可显著减少Grn(-/-)小胶质细胞的突触修剪,并减轻Grn(-/-)小鼠的神经退行性变、行为表型和过早死亡。总之,我们的结果揭示了颗粒蛋白前体在衰老过程中抑制异常小胶质细胞激活方面以前未被认识的作用。这些结果代表了一个重要的概念性进展,即补体激活和小胶质细胞介导的突触修剪是颗粒蛋白前体缺乏所致神经退行性变的主要驱动因素,而非后果。