Suppr超能文献

间歇性递增循环拉伸对工程组织中ERK信号传导和胶原蛋白生成的影响

Effects of Intermittent and Incremental Cyclic Stretch on ERK Signaling and Collagen Production in Engineered Tissue.

作者信息

Schmidt Jillian B, Chen Kelley, Tranquillo Robert T

机构信息

Department of Chemical Engineering & Materials Science, University of Minnesota, 7-114 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA.

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Cell Mol Bioeng. 2016 Mar 1;9(1):55-64. doi: 10.1007/s12195-015-0415-6. Epub 2015 Aug 11.

Abstract

Intermittent cyclic stretching and incrementally increasing strain amplitude cyclic stretching were explored to overcome the reported adaptation of fibroblasts in response to constant amplitude cyclic stretching, with the goals of accelerating collagen production and understanding the underlying cell signaling. The effects of constant amplitude, intermittent, and incremental cyclic stretching regimens were investigated for dermal fibroblasts entrapped in a fibrin gel by monitoring the extracellular signal-regulated kinase (ERK1/2) and p38 pathways, collagen transcription, and finally the deposited collagen protein. Activation of ERK1/2, which has been shown to be necessary for stretch-induced collagen transcription, was maximal at 15 min and decayed by 1 h. ERK1/2 was reactivated by an additional onset of stretching or by an increment in the strain amplitude 6 h after the initial stimulus, which was approximately the lifetime of activated p38, a known ERK1/2 inhibitor. While both intermittent and incremental regimens reactivated ERK1/2, only incremental stretching increased collagen production compared to samples stretched with constant amplitude, resulting in a 37% increase in collagen per cell after 2 weeks. This suggests that a regimen with small, frequent increments in strain amplitude is optimal for this system and should be used in bioreactors for engineered tissues requiring high collagen content.

摘要

研究了间歇性循环拉伸和逐渐增加应变幅度的循环拉伸,以克服据报道成纤维细胞对恒定幅度循环拉伸的适应性,目的是加速胶原蛋白的产生并了解潜在的细胞信号传导。通过监测细胞外信号调节激酶(ERK1/2)和p38信号通路、胶原蛋白转录以及最终沉积的胶原蛋白蛋白,研究了恒定幅度、间歇性和递增性循环拉伸方案对包埋在纤维蛋白凝胶中的真皮成纤维细胞的影响。已证明ERK1/2的激活是拉伸诱导胶原蛋白转录所必需的,在15分钟时达到最大值,并在1小时后衰减。在初始刺激6小时后,额外的拉伸起始或应变幅度的增加会使ERK1/2重新激活,这大约是已知的ERK1/2抑制剂p38的激活寿命。虽然间歇性和递增性方案都能使ERK1/2重新激活,但与恒定幅度拉伸的样本相比,只有递增性拉伸增加了胶原蛋白的产生,两周后每个细胞的胶原蛋白增加了37%。这表明,对于该系统而言,应变幅度小且频繁增加的方案是最佳的,应在需要高胶原蛋白含量的工程组织生物反应器中使用。

相似文献

1
Effects of Intermittent and Incremental Cyclic Stretch on ERK Signaling and Collagen Production in Engineered Tissue.
Cell Mol Bioeng. 2016 Mar 1;9(1):55-64. doi: 10.1007/s12195-015-0415-6. Epub 2015 Aug 11.
2
3
Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue.
Proc Natl Acad Sci U S A. 2008 May 6;105(18):6537-42. doi: 10.1073/pnas.0711217105. Epub 2008 Apr 24.
4
Optimizing an intermittent stretch paradigm using ERK1/2 phosphorylation results in increased collagen synthesis in engineered ligaments.
Tissue Eng Part A. 2012 Feb;18(3-4):277-84. doi: 10.1089/ten.TEA.2011.0336. Epub 2011 Dec 22.
7
The cellular responses of corneal fibroblasts to cyclic stretching loads.
Exp Eye Res. 2023 Dec;237:109696. doi: 10.1016/j.exer.2023.109696. Epub 2023 Oct 27.
8
Cyclic stretch-induced cPLA2 mediates ERK 1/2 signaling in rabbit proximal tubule cells.
Kidney Int. 2004 Feb;65(2):551-63. doi: 10.1111/j.1523-1755.2004.00405.x.
9
Fibroblast-seeded collagen gels in response to dynamic equibiaxial mechanical stimuli: A biomechanical study.
J Biomech. 2018 Sep 10;78:134-142. doi: 10.1016/j.jbiomech.2018.07.030. Epub 2018 Jul 30.

引用本文的文献

1
Tension-sensitive HOX gene expression in fibroblasts for differential scar formation.
J Transl Med. 2025 Feb 10;23(1):168. doi: 10.1186/s12967-025-06191-1.
2
Mechanical stimulation of induced pluripotent stem derived cardiac fibroblasts.
Sci Rep. 2024 Apr 29;14(1):9795. doi: 10.1038/s41598-024-60102-w.
4
In vitro bioreactor for mechanical control and characterization of tissue constructs.
J Biomech. 2023 Jan;147:111458. doi: 10.1016/j.jbiomech.2023.111458. Epub 2023 Jan 18.
5
FRET Visualization of Cyclic Stretch-Activated ERK Calcium Channels Mechanosensation While Not Integrin β1 in Airway Smooth Muscle Cells.
Front Cell Dev Biol. 2022 May 19;10:847852. doi: 10.3389/fcell.2022.847852. eCollection 2022.
6
Mechano-chemo signaling interactions modulate matrix production by cardiac fibroblasts.
Matrix Biol Plus. 2020 Dec 30;10:100055. doi: 10.1016/j.mbplus.2020.100055. eCollection 2021 Jun.
7
Modulation of Mechanical Stress Mitigates Anti-Dsg3 Antibody-Induced Dissociation of Cell-Cell Adhesion.
Adv Biol (Weinh). 2021 Jan;5(1):e2000159. doi: 10.1002/adbi.202000159. Epub 2021 Jan 4.
8
Human iPS Cell-derived Tissue Engineered Vascular Graft: Recent Advances and Future Directions.
Stem Cell Rev Rep. 2021 Jun;17(3):862-877. doi: 10.1007/s12015-020-10091-w. Epub 2020 Nov 23.

本文引用的文献

1
2
Tubular heart valves from decellularized engineered tissue.
Ann Biomed Eng. 2013 Dec;41(12):2645-54. doi: 10.1007/s10439-013-0872-9. Epub 2013 Jul 30.
3
Understanding strain-induced collagen matrix development in engineered cardiovascular tissues from gene expression profiles.
Cell Tissue Res. 2013 Jun;352(3):727-37. doi: 10.1007/s00441-013-1573-2. Epub 2013 Feb 21.
4
Identification of regional mechanical anisotropy in soft tissue analogs.
J Biomech Eng. 2011 Sep;133(9):091011. doi: 10.1115/1.4005170.
5
Optimizing an intermittent stretch paradigm using ERK1/2 phosphorylation results in increased collagen synthesis in engineered ligaments.
Tissue Eng Part A. 2012 Feb;18(3-4):277-84. doi: 10.1089/ten.TEA.2011.0336. Epub 2011 Dec 22.
7
Effect of dynamic loading on the transport of solutes into agarose hydrogels.
Biophys J. 2009 Aug 19;97(4):968-75. doi: 10.1016/j.bpj.2009.05.047.
8
Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels.
Cell Transplant. 2009;18(8):915-21. doi: 10.3727/096368909X471161. Epub 2009 Apr 9.
9
Controlled cyclic stretch bioreactor for tissue-engineered heart valves.
Biomaterials. 2009 Sep;30(25):4078-84. doi: 10.1016/j.biomaterials.2009.04.027. Epub 2009 May 26.
10
Dynamic loading of deformable porous media can induce active solute transport.
J Biomech. 2008 Nov 14;41(15):3152-7. doi: 10.1016/j.jbiomech.2008.08.023. Epub 2008 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验