Ananyev Gennady, Gates Colin, Dismukes G Charles
The Waksman Institute of Microbiology and the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States.
The Waksman Institute of Microbiology and the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States.
Biochim Biophys Acta. 2016 Sep;1857(9):1380-1391. doi: 10.1016/j.bbabio.2016.04.056. Epub 2016 Apr 24.
We have measured flash-induced oxygen quantum yields (O2-QYs) and primary charge separation (Chl variable fluorescence yield, Fv/Fm) in vivo among phylogenetically diverse microalgae and cyanobacteria. Higher O2-QYs can be attained in cells by releasing constraints on charge transfer at the Photosystem II (PSII) acceptor side by adding membrane-permeable benzoquinone (BQ) derivatives that oxidize plastosemiquinone QB(-) and QBH2. This method allows uncoupling PSII turnover from its natural regulation in living cells, without artifacts of isolating PSII complexes. This approach reveals different extents of regulation across species, controlled at the QB(-) acceptor site. Arthrospira maxima is confirmed as the most efficient PSII-WOC (water oxidizing complex) and exhibits the least regulation of flux. Thermosynechococcus elongatus exhibits an O2-QY of 30%, suggesting strong downregulation. WOC cycle simulations with the most accurate model (VZAD) show that a light-driven backward transition (net addition of an electron to the WOC, distinct from recombination) occurs in up to 25% of native PSIIs in the S2 and S3 states, while adding BQ prevents backward transitions and increases the lifetime of S2 and S3 by 10-fold. Backward transitions occur in PSIIs that have plastosemiquinone radicals in the QB site and are postulated to be physiologically regulated pathways for storing light energy as proton gradient through direct PSII-cyclic electron flow (PSII-CEF). PSII-CEF is independent of classical PSI/cyt-b6f-CEF and provides an alternative proton translocation pathway for energy conversion. PSII-CEF enables variable fluxes between linear and cyclic electron pathways, thus accommodating species-dependent needs for redox and ion-gradient energy sources powered by a single photosystem.
我们已经测量了系统发育上不同的微藻和蓝细菌体内闪光诱导的氧量子产率(O2-QYs)和初级电荷分离(叶绿素可变荧光产率,Fv/Fm)。通过添加可氧化质体半醌QB(-)和QBH2的膜渗透性苯醌(BQ)衍生物,解除对光系统II(PSII)受体侧电荷转移的限制,细胞中可获得更高的O2-QYs。这种方法可以使PSII周转与其在活细胞中的自然调节解偶联,而不会出现分离PSII复合物的假象。这种方法揭示了不同物种间在QB(-)受体位点控制的不同程度的调节。极大节旋藻被确认为最有效的PSII-水氧化复合物(WOC),并且通量调节最少。嗜热栖热菌的O2-QY为30%,表明有强烈的下调。用最精确的模型(VZAD)进行的WOC循环模拟表明,在S2和S3状态下,高达25%的天然PSII中会发生光驱动反向转变(向WOC净添加一个电子,不同于重组),而添加BQ可防止反向转变,并使S2和S3的寿命延长10倍。反向转变发生在QB位点有质体半醌自由基的PSII中,据推测这是通过直接PSII-循环电子流(PSII-CEF)将光能存储为质子梯度的生理调节途径。PSII-CEF独立于经典的PSI/细胞色素b6f-CEF,并为能量转换提供了另一种质子转运途径。PSII-CEF能够在线性和循环电子途径之间实现可变通量,从而满足由单个光系统驱动的氧化还原和离子梯度能源的物种依赖性需求。