The Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, United States; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States.
The Hebrew University of Jerusalem, Israel.
Biochim Biophys Acta Bioenerg. 2017 Nov;1858(11):873-883. doi: 10.1016/j.bbabio.2017.07.001. Epub 2017 Jul 19.
The desert microalga Chlorella ohadii was reported to grow at extreme light intensities with minimal photoinhibition, tolerate frequent de/re-hydrations, yet minimally employs antenna-based non-photochemical quenching for photoprotection. Here we investigate the molecular mechanisms by measuring Photosystem II charge separation yield (chlorophyll variable fluorescence, Fv/Fm) and flash-induced O yield to measure the contributions from both linear (PSII-LEF) and cyclic (PSII-CEF) electron flow within PSII. Cells grow increasingly faster at higher light intensities (μE/m/s) from low (20) to high (200) to extreme (2000) by escalating photoprotection via shifting from PSII-LEF to PSII-CEF. This shifts PSII charge separation from plastoquinone reduction (PSII-LEF) to plastoquinol oxidation (PSII-CEF), here postulated to enable proton gradient and ATP generation that powers photoprotection. Low light-grown cells have unusually small antennae (332 Chl/PSII), use mainly PSII-LEF (95%) and convert 40% of PSII charge separations into O (a high O quantum yield of 0.06mol/mol PSII/flash). High light-grown cells have smaller antenna and lower PSII-LEF (63%). Extreme light-grown cells have only 42 Chl/PSII (no LHCII antenna), minimal PSII-LEF (10%), and grow faster than any known phototroph (doubling time 1.3h). Adding a synthetic quinone in excess to supplement the PQ pool fully uncouples PSII-CEF from its natural regulation and produces maximum PSII-LEF. Upon dark adaptation PSII-LEF rapidly reverts to PSII-CEF, a transient protection mechanism to conserve water and minimize the cost of antenna biosynthesis. The capacity of the electron acceptor pool (plastoquinone pool), and the characteristic times for exchange of (PQH) with PQ and reoxidation of (PQH) were determined.
据报道,沙漠微藻 Chlorella ohadii 可以在极低的光强下生长,几乎没有光抑制,能耐受频繁的脱水/复水过程,但很少利用天线非光化学猝灭来进行光保护。在这里,我们通过测量光系统 II 电荷分离产率(叶绿素可变荧光,Fv/Fm)和闪光诱导的 O 产量来研究分子机制,以测量光系统 II 中线性(PSII-LEF)和循环(PSII-CEF)电子流的贡献。从低(20)到高(200)再到极端(2000)的光强下,细胞的生长速度越来越快,通过从 PSII-LEF 到 PSII-CEF 的转变来加强光保护。这将 PSII 电荷分离从质醌还原(PSII-LEF)转移到质醇氧化(PSII-CEF),这里推测可以产生质子梯度和 ATP 生成,为光保护提供动力。低光生长的细胞具有异常小的天线(332 个叶绿素/PSII),主要使用 PSII-LEF(95%),并将 40%的 PSII 电荷分离转化为 O(O 量子产率高达 0.06mol/mol PSII/闪光)。高光生长的细胞具有较小的天线和较低的 PSII-LEF(63%)。极端光生长的细胞只有 42 个叶绿素/PSII(没有 LHCII 天线),最小的 PSII-LEF(10%),并且比任何已知的光养生物生长得都快(倍增时间为 1.3 小时)。过量添加合成醌可以完全解耦 PSII-CEF 及其自然调控,并产生最大的 PSII-LEF。在暗适应时,PSII-LEF 迅速恢复到 PSII-CEF,这是一种保护机制,可以节约水分并最大限度地减少天线生物合成的成本。电子受体池(质醌池)的容量以及(PQH)与 PQ 交换和(PQH)再氧化的特征时间都得到了确定。