Gates Colin, Ananyev Gennady, Foflonker Fatima, Bhattacharya Debashish, Dismukes G Charles
Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA.
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA.
Photosynth Res. 2024 Dec;162(2-3):439-457. doi: 10.1007/s11120-024-01075-9. Epub 2024 Feb 8.
The green algal genus Picochlorum is of biotechnological interest because of its robust response to multiple environmental stresses. We compared the metabolic performance of P. SE3 and P. oklahomense to diverse microbial phototrophs and observed exceptional performance of photosystem II (PSII) in light energy conversion in both Picochlorum species. The quantum yield (QY) for O evolution is the highest of any phototroph yet observed, 32% (20%) by P. SE3 (P. okl) when normalized to total PSII subunit PsbA (D1) protein, and 80% (75%) normalized per active PSII, respectively. Three factors contribute: (1) an efficient water oxidizing complex (WOC) with the fewest photochemical misses of any organism; (2) faster reoxidation of reduced (PQH) in P. SE3 than in P. okl. (period-2 Fourier amplitude); and (3) rapid reoxidation of the plastoquinol pool by downstream electron carriers (Cyt bf/PETC) that regenerates PQ faster in P. SE3. This performance gain is achieved without significant residue changes around the Q site and thus points to a pull mechanism involving faster PQH reoxidation by Cyt bf/PETC that offsets charge recombination. This high flux in P. SE3 may be explained by genomically encoded plastoquinol terminal oxidases 1 and 2, whereas P. oklahomense has neither. Our results suggest two distinct types of PSII centers exist, one specializing in linear electron flow and the other in PSII-cyclic electron flow. Several amino acids within D1 differ from those in the low-light-descended D1 sequences conserved in Viridiplantae, and more closely match those in cyanobacterial high-light D1 isoforms, including changes near tyrosine Y and a water/proton channel near the WOC. These residue changes may contribute to the exceptional performance of Picochlorum at high-light intensities by increasing the water oxidation efficiency and the electron/proton flux through the PSII acceptors (QQ).
绿藻属的皮氏绿球藻(Picochlorum)因其对多种环境胁迫的强烈响应而具有生物技术研究价值。我们将皮氏绿球藻SE3(P. SE3)和俄克拉荷马皮氏绿球藻(P. oklahomense)的代谢性能与多种微生物光合生物进行了比较,观察到这两种皮氏绿球藻在光能转换中光系统II(PSII)的表现优异。以O2释放的量子产率(QY)是迄今观察到的所有光合生物中最高的,相对于总PSII亚基PsbA(D1)蛋白,皮氏绿球藻SE3(俄克拉荷马皮氏绿球藻)的量子产率为32%(20%),而相对于每个活性PSII,分别为80%(75%)。有三个因素促成此结果:(1)一种高效的水氧化复合物(WOC),其光化学失误次数是所有生物中最少的;(2)皮氏绿球藻SE3中还原型(PQH)的再氧化速度比俄克拉荷马皮氏绿球藻快(周期2傅里叶振幅);(3)下游电子载体(细胞色素bf/质体末端细胞色素复合物,Cyt bf/PETC)对质体醌池的快速再氧化,使得皮氏绿球藻SE3中PQ的再生更快。这种性能提升是在Q位点周围没有显著残基变化的情况下实现的,因此表明存在一种拉动机制,即Cyt bf/PETC对PQH的更快再氧化抵消了电荷复合。皮氏绿球藻SE3中的这种高通量可能由基因组编码的质体醌末端氧化酶1和2来解释,而俄克拉荷马皮氏绿球藻则没有。我们的结果表明存在两种不同类型的PSII中心,一种专门进行线性电子流,另一种进行PSII循环电子流。D1中的几个氨基酸与绿藻门中低光照条件下的D1序列保守氨基酸不同,更接近蓝藻高光D1亚型中的氨基酸,包括酪氨酸Y附近的变化以及WOC附近的水/质子通道。这些残基变化可能通过提高水氧化效率以及通过PSII受体(QQ)的电子/质子通量,从而有助于皮氏绿球藻在高光强度下表现优异。