Suppr超能文献

运动期间呼吸困难感知与呼吸急促发生之间的关联。

Coupling of dyspnea perception and occurrence of tachypnea during exercise.

作者信息

Tsukada Setsuro, Masaoka Yuri, Yoshikawa Akira, Okamoto Keiji, Homma Ikuo, Izumizaki Masahiko

机构信息

Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.

Department of Neurology, Showa University School of Medicine, Tokyo, Japan.

出版信息

J Physiol Sci. 2017 Jan;67(1):173-180. doi: 10.1007/s12576-016-0452-5. Epub 2016 Apr 27.

Abstract

During exercise, tidal volume initially contributes to ventilatory responses more than respiratory frequency, and respiratory frequency then increases rapidly while tidal volume stabilizes. Dyspnea intensity is also known to increase in a threshold-like manner. We tested the possibility that the threshold of tachypneic breathing is equal to that of dyspnea perception during cycle ergometer exercise (n = 27). Dyspnea intensity was scored by a visual analog scale. Thresholds were expressed as values of pulmonary O uptake at each breakpoint. Dyspnea intensity and respiratory frequency started increasing rapidly once the intensity of stimuli exceeded a threshold level. The thresholds for dyspnea intensity and for occurrence of tachypnea were significantly correlated. An intraclass correlation coefficient of 0.71 and narrow limits of agreement on the Bland-Altman plot indicated a good agreement between these thresholds. These results suggest that the start of tachypneic breathing coincides with the threshold for dyspnea intensity during cycle ergometer exercise.

摘要

在运动过程中,潮气量最初对通气反应的贡献大于呼吸频率,随后呼吸频率迅速增加,而潮气量保持稳定。已知呼吸困难强度也以类似阈值的方式增加。我们测试了在蹬车运动期间(n = 27),呼吸急促的阈值与呼吸困难感知阈值相等的可能性。呼吸困难强度通过视觉模拟量表进行评分。阈值以每个转折点处的肺氧摄取值表示。一旦刺激强度超过阈值水平,呼吸困难强度和呼吸频率就开始迅速增加。呼吸困难强度阈值与呼吸急促发生阈值显著相关。组内相关系数为0.71,Bland-Altman图上的一致性界限较窄,表明这些阈值之间具有良好的一致性。这些结果表明,在蹬车运动期间,呼吸急促的开始与呼吸困难强度阈值相吻合。

相似文献

1
Coupling of dyspnea perception and occurrence of tachypnea during exercise.
J Physiol Sci. 2017 Jan;67(1):173-180. doi: 10.1007/s12576-016-0452-5. Epub 2016 Apr 27.
2
Coupling of dyspnea perception and tachypneic breathing during hypercapnia.
Respir Physiol Neurobiol. 2011 Dec 15;179(2-3):276-86. doi: 10.1016/j.resp.2011.09.007. Epub 2011 Sep 16.
3
Comparing dynamic hyperinflation and associated dyspnea induced by metronome-paced tachypnea versus incremental exercise.
COPD. 2014 Feb;11(1):105-12. doi: 10.3109/15412555.2013.841669. Epub 2013 Oct 23.
4
Differential control of respiratory frequency and tidal volume during high-intensity interval training.
Exp Physiol. 2017 Aug 1;102(8):934-949. doi: 10.1113/EP086352. Epub 2017 Jun 30.
5
Physiological mechanisms of sex differences in exertional dyspnoea: role of neural respiratory motor drive.
Exp Physiol. 2014 Feb;99(2):427-41. doi: 10.1113/expphysiol.2013.074880. Epub 2013 Nov 8.
9
Qualitative aspects of exertional dyspnea in patients with interstitial lung disease.
J Appl Physiol (1985). 1998 Jun;84(6):2000-9. doi: 10.1152/jappl.1998.84.6.2000.
10
Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality.
Appl Physiol Nutr Metab. 2015 Nov;40(11):1199-209. doi: 10.1139/apnm-2015-0179. Epub 2015 Aug 4.

引用本文的文献

2
Step-adaptive sound guidance enhances locomotor-respiratory coupling in novice female runners: A proof-of-concept study.
Front Sports Act Living. 2023 Mar 1;5:1112663. doi: 10.3389/fspor.2023.1112663. eCollection 2023.
3
Breath Tools: A Synthesis of Evidence-Based Breathing Strategies to Enhance Human Running.
Front Physiol. 2022 Mar 17;13:813243. doi: 10.3389/fphys.2022.813243. eCollection 2022.

本文引用的文献

2
Recent advances in dyspnea.
Chest. 2015 Jan;147(1):232-241. doi: 10.1378/chest.14-0800.
3
The neural cascade of olfactory processing: a combined fMRI-EEG study.
Respir Physiol Neurobiol. 2014 Dec 1;204:71-7. doi: 10.1016/j.resp.2014.06.008. Epub 2014 Jun 25.
4
Where is the rhythm generator for emotional breathing?
Prog Brain Res. 2014;209:367-77. doi: 10.1016/B978-0-444-63274-6.00019-9.
5
Dyspnoea: a multidimensional and multidisciplinary approach.
Eur Respir J. 2014 Jun;43(6):1750-62. doi: 10.1183/09031936.00092613. Epub 2014 Feb 13.
6
CO2 homeostasis is maintained in conscious humans by regulation of tidal volume, but not of respiratory rhythm.
Respir Physiol Neurobiol. 2013 Apr 1;186(2):155-63. doi: 10.1016/j.resp.2013.01.008. Epub 2013 Jan 24.
7
Tidal volume inflection and its sensory consequences during exercise in patients with stable asthma.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):374-9. doi: 10.1016/j.resp.2012.08.026. Epub 2012 Sep 28.
8
Hyperpnoeic response independent of limb movements at exercise onset in mice.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):319-31. doi: 10.1016/j.resp.2012.09.010. Epub 2012 Sep 27.
9
Coupling of dyspnea perception and tachypneic breathing during hypercapnia.
Respir Physiol Neurobiol. 2011 Dec 15;179(2-3):276-86. doi: 10.1016/j.resp.2011.09.007. Epub 2011 Sep 16.
10
Dyspnoea: underlying mechanisms and treatment.
Br J Anaesth. 2011 Apr;106(4):463-74. doi: 10.1093/bja/aer040. Epub 2011 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验