Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
J Med Syst. 2016 Jun;40(6):143. doi: 10.1007/s10916-016-0505-6. Epub 2016 Apr 27.
The cardiac activities such as the depolarization and the relaxation of atria and ventricles are observed in electrocardiogram (ECG). The changes in the morphological features of ECG are the symptoms of particular heart pathology. It is a cumbersome task for medical experts to visually identify any subtle changes in the morphological features during 24 hours of ECG recording. Therefore, the automated analysis of ECG signal is a need for accurate detection of cardiac abnormalities. In this paper, a novel method for automated detection of cardiac abnormalities from multilead ECG is proposed. The method uses multiscale phase alternation (PA) features of multilead ECG and two classifiers, k-nearest neighbor (KNN) and fuzzy KNN for classification of bundle branch block (BBB), myocardial infarction (MI), heart muscle defect (HMD) and healthy control (HC). The dual tree complex wavelet transform (DTCWT) is used to decompose the ECG signal of each lead into complex wavelet coefficients at different scales. The phase of the complex wavelet coefficients is computed and the PA values at each wavelet scale are used as features for detection and classification of cardiac abnormalities. A publicly available multilead ECG database (PTB database) is used for testing of the proposed method. The experimental results show that, the proposed multiscale PA features and the fuzzy KNN classifier have better performance for detection of cardiac abnormalities with sensitivity values of 78.12 %, 80.90 % and 94.31 % for BBB, HMD and MI classes. The sensitivity value of proposed method for MI class is compared with the state-of-art techniques from multilead ECG.
心电图(ECG)可观察到心房和心室的去极化和松弛等心脏活动。心电图形态特征的变化是特定心脏病理学的症状。对于医学专家来说,通过肉眼在 24 小时的心电图记录中识别形态特征的任何细微变化都是一项繁琐的任务。因此,对心电图信号进行自动分析是准确检测心脏异常的需要。本文提出了一种从多导联心电图中自动检测心脏异常的新方法。该方法使用多导联心电图的多尺度相位交替(PA)特征和两个分类器,k-最近邻(KNN)和模糊 KNN,对束支传导阻滞(BBB)、心肌梗死(MI)、心肌缺陷(HMD)和健康对照(HC)进行分类。双树复小波变换(DTCWT)用于将每个导联的心电图信号分解为不同尺度的复小波系数。计算复小波系数的相位,并将每个小波尺度的 PA 值用作检测和分类心脏异常的特征。使用公共可用的多导联心电图数据库(PTB 数据库)对所提出的方法进行测试。实验结果表明,所提出的多尺度 PA 特征和模糊 KNN 分类器在检测心脏异常方面具有更好的性能,对于 BBB、HMD 和 MI 类别的敏感性值分别为 78.12%、80.90%和 94.31%。与多导联心电图的最新技术相比,提出的方法对 MI 类的敏感性值。