Suppr超能文献

使用一种简洁的、受昆虫启发的熟悉度算法进行室内环境的自主视觉导航。

Autonomous Visual Navigation of an Indoor Environment Using a Parsimonious, Insect Inspired Familiarity Algorithm.

作者信息

Gaffin Douglas D, Brayfield Brad P

机构信息

Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America.

出版信息

PLoS One. 2016 Apr 27;11(4):e0153706. doi: 10.1371/journal.pone.0153706. eCollection 2016.

Abstract

The navigation of bees and ants from hive to food and back has captivated people for more than a century. Recently, the Navigation by Scene Familiarity Hypothesis (NSFH) has been proposed as a parsimonious approach that is congruent with the limited neural elements of these insects' brains. In the NSFH approach, an agent completes an initial training excursion, storing images along the way. To retrace the path, the agent scans the area and compares the current scenes to those previously experienced. By turning and moving to minimize the pixel-by-pixel differences between encountered and stored scenes, the agent is guided along the path without having memorized the sequence. An important premise of the NSFH is that the visual information of the environment is adequate to guide navigation without aliasing. Here we demonstrate that an image landscape of an indoor setting possesses ample navigational information. We produced a visual landscape of our laboratory and part of the adjoining corridor consisting of 2816 panoramic snapshots arranged in a grid at 12.7-cm centers. We show that pixel-by-pixel comparisons of these images yield robust translational and rotational visual information. We also produced a simple algorithm that tracks previously experienced routes within our lab based on an insect-inspired scene familiarity approach and demonstrate that adequate visual information exists for an agent to retrace complex training routes, including those where the path's end is not visible from its origin. We used this landscape to systematically test the interplay of sensor morphology, angles of inspection, and similarity threshold with the recapitulation performance of the agent. Finally, we compared the relative information content and chance of aliasing within our visually rich laboratory landscape to scenes acquired from indoor corridors with more repetitive scenery.

摘要

蜜蜂和蚂蚁从蜂巢到食物源再返回的导航行为已经吸引人们长达一个多世纪。最近,基于场景熟悉度的导航假说(NSFH)被提出,这是一种简洁的方法,与这些昆虫大脑中有限的神经元元件相契合。在NSFH方法中,一个主体完成一次初始训练行程,沿途存储图像。为了回溯路径,主体扫描该区域并将当前场景与之前经历过的场景进行比较。通过转动和移动以最小化遇到的场景与存储场景之间的逐像素差异,主体在无需记住序列的情况下被引导沿着路径行进。NSFH的一个重要前提是环境的视觉信息足以在无混叠的情况下引导导航。在此我们证明室内环境的图像景观拥有充足的导航信息。我们制作了我们实验室及部分相邻走廊的视觉景观,它由2816张全景快照组成,以12.7厘米的间距排列成网格状。我们表明这些图像的逐像素比较能产生强大的平移和旋转视觉信息。我们还基于受昆虫启发的场景熟悉度方法制作了一个简单算法,用于追踪我们实验室中之前经历过的路线,并证明存在足够的视觉信息使一个主体能够回溯复杂的训练路线,包括那些从起点看不到终点的路线。我们利用这个景观系统地测试了传感器形态、检测角度和相似度阈值与主体重现性能之间的相互作用。最后,我们将我们视觉丰富的实验室景观中的相对信息含量和混叠可能性与从具有更多重复场景的室内走廊获取的场景进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a24/4847926/f5098ce38e79/pone.0153706.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验