Basten Kai, Mallot Hanspeter A
Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
Biol Cybern. 2010 May;102(5):413-25. doi: 10.1007/s00422-010-0375-9. Epub 2010 Mar 19.
Desert ants, foraging in cluttered semiarid environments, are thought to be visually guided along individual, habitual routes. While other navigational mechanisms (e.g. path integration) are well studied, the question of how ants extract reliable visual features from a complex visual scene is still largely open. This paper explores the assumption that the upper outline of ground objects formed against the sky, i.e. the skyline, provides sufficient information for visual navigation. We constructed a virtual model of the ant's environment. In the virtual environment, panoramic images were recorded and adapted to the resolution of the desert ant's complex eye. From these images either a skyline code or a pixel-based intensity code were extracted. Further, two homing algorithms were implemented, a modified version of the average landmark vector (ALV) model (Lambrinos et al. Robot Auton Syst 30:39-64, 2000) and a gradient ascent method. Results show less spatial aliasing for skyline coding and best homing performance for ALV homing based on skyline codes. This supports the assumption of skyline coding in visual homing of desert ants and allows novel approaches to technical outdoor navigation.
沙漠蚂蚁在杂乱的半干旱环境中觅食,被认为是沿着各自习惯的路线以视觉为导向。虽然其他导航机制(如路径积分)已得到充分研究,但蚂蚁如何从复杂的视觉场景中提取可靠视觉特征的问题在很大程度上仍未解决。本文探讨了这样一种假设,即相对于天空形成的地面物体的上部轮廓,即天际线,为视觉导航提供了足够的信息。我们构建了蚂蚁环境的虚拟模型。在虚拟环境中,记录全景图像并使其适应沙漠蚂蚁复眼的分辨率。从这些图像中提取出天际线编码或基于像素的强度编码。此外,还实现了两种归巢算法,一种是平均地标向量(ALV)模型的改进版本(Lambrinos等人,《机器人与自动系统》30:39 - 64,2000)和一种梯度上升方法。结果表明,天际线编码的空间混叠较少,基于天际线编码的ALV归巢具有最佳归巢性能。这支持了沙漠蚂蚁视觉归巢中天际线编码的假设,并为户外技术导航提供了新方法。