Suppr超能文献

水质污染物羟基自由基速率常数的 QSPR 预测。

QSPR prediction of the hydroxyl radical rate constant of water contaminants.

机构信息

Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.

Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia.

出版信息

Water Res. 2016 Jul 1;98:344-53. doi: 10.1016/j.watres.2016.04.038. Epub 2016 Apr 19.

Abstract

In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed.

摘要

在高级氧化工艺 (AOPs) 中,水合羟基自由基 (HO) 作为一种强氧化剂与有机污染物发生反应。羟基自由基速率常数 (kHO) 对于 AOPs 的评估和建模很重要。在这项研究中,定量构效关系 (QSPR) 方法被应用于为来自 27 种不同化学类别的 457 种水污染物的大量数据集建立羟基自由基速率常数模型。采用受限二进制粒子群优化和多元线性回归 (BPSO-MLR) 来获得具有 8 个理论描述符的最佳模型。开发了优化的前馈神经网络 (FFNN) 来研究与 kHO 相关的选定分子参数的复杂性能。尽管 FFNN 预测结果比 BPSO-MLR 获得的结果更准确,但后者的应用更加方便。各种内部和外部验证技术表明,所获得的模型可以预测大量水中污染物的对数羟基自由基速率常数,绝对相对误差小于 4%。最后,将上述提出的模型与之前报道的模型进行比较,并讨论了对 AOP 降解效率有贡献的结构因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验