Suppr超能文献

内分泌门诊未就诊的预测因素

PREDICTORS OF NONATTENDANCE AT AN ENDOCRINOLOGY OUTPATIENT CLINIC.

作者信息

Eid Wael Emad, Shehata Shehata Farag, Cole Dan Arthur, Doerman Krista Lynn

出版信息

Endocr Pract. 2016 Aug;22(8):983-9. doi: 10.4158/EP161198.OR. Epub 2016 Apr 28.

Abstract

OBJECTIVE

To identify predictors potentially contributing to patients' nonattendance or to same-day cancellation of scheduled appointments at an adult endocrinology office practice.

METHODS

A retrospective, records-based, cross-sectional study was conducted using data from 9,305 electronic medical records of patients presenting at a U.S. metropolitan adult endocrinology clinic in 2013. Statistical analyses included multivariate regression, calculated odds ratios, and posttest probabilities.

RESULTS

Of 29,178 total patient visits analyzed, 68% were attended by patients. Of total scheduled appointments, 7% resulted in nonattendance and 5% in same-day cancellation. The most significant predictors of nonatten-dance were a previous history of nonattendance (P<.001), uncontrolled diabetes (P<.001), and new patients to the practice (P<.001). Long lead-time to appointment (P = .001), younger age (P<.001), and certain insurance carriers (P<.001) also were significant predictors.

CONCLUSION

Specific predictors of nonattendance at scheduled appointments were identified using statistical analysis of electronic medical record data. Previous history of nonattendance and having uncontrolled diabetes (especially in patients newly referred to the practice) are among these significant predictors. Identifying specific predictors for nonattendance enables targeted strategies to be developed.

ABBREVIATIONS

APRN = Advanced Practice Registered Nurse CI = confidence interval DM = diabetes mellitus EMR = electronic medical record HbA1c = glycated hemoglobin NS = no-show OR = odds ratio SDC = same-day cancellation.

摘要

目的

确定可能导致成年内分泌科门诊患者未就诊或当天取消预约的预测因素。

方法

采用回顾性、基于记录的横断面研究,使用2013年在美国一家大都市成年内分泌科诊所就诊的9305例患者的电子病历数据。统计分析包括多变量回归、计算比值比和检验后概率。

结果

在分析的29178次患者就诊中,68%的患者前来就诊。在所有预约中,7%的预约患者未就诊,5%的预约在当天被取消。未就诊的最显著预测因素是既往未就诊史(P<0.001)、糖尿病控制不佳(P<0.001)和新患者(P<0.001)。预约提前期长(P = 0.001)、年龄较小(P<0.001)和某些保险公司(P<0.001)也是显著的预测因素。

结论

通过对电子病历数据的统计分析,确定了预约未就诊的特定预测因素。既往未就诊史和糖尿病控制不佳(尤其是新转诊至该诊所的患者)是这些显著预测因素之一。确定未就诊的特定预测因素有助于制定针对性策略。

缩写

APRN = 高级执业注册护士;CI = 置信区间;DM = 糖尿病;EMR = 电子病历;HbA1c = 糖化血红蛋白;NS = 未就诊;OR = 比值比;SDC = 当天取消

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验