State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
Small. 2016 Jun;12(22):3048-58. doi: 10.1002/smll.201600633. Epub 2016 Apr 29.
A new and generic strategy to construct interwoven carbon nanotube (CNT) branches on various metal oxide nanostructure arrays (exemplified by V2 O3 nanoflakes, Co3 O4 nanowires, Co3 O4 -CoTiO3 composite nanotubes, and ZnO microrods), in order to enhance their electrochemical performance, is demonstrated for the first time. In the second part, the V2 O3 /CNTs core/branch composite arrays as the host for Na(+) storage are investigated in detail. This V2 O3 /CNTs hybrid electrode achieves a reversible charge storage capacity of 612 mAh g(-1) at 0.1 A g(-1) and outstanding high-rate cycling stability (a capacity retention of 100% after 6000 cycles at 2 A g(-1) , and 70% after 10 000 cycles at 10 A g(-1) ). Kinetics analysis reveals that the Na(+) storage is a pseudocapacitive dominating process and the CNTs improve the levels of pseudocapacitive energy by providing a conductive network.
首次提出了一种新的通用策略,可将相互交织的碳纳米管 (CNT) 分支构建在各种金属氧化物纳米结构阵列上(以 V2 O3 纳米薄片、Co3 O4 纳米线、Co3 O4-CoTiO3 复合纳米管和 ZnO 微棒为例),以提高其电化学性能。在第二部分中,详细研究了 V2 O3 /CNTs 核/分支复合阵列作为 Na(+) 存储的主体。这种 V2 O3 /CNTs 混合电极在 0.1 A g(-1) 时具有 612 mAh g(-1) 的可逆电荷存储容量和出色的高倍率循环稳定性(在 2 A g(-1) 时 6000 次循环后容量保持率为 100%,在 10 A g(-1) 时 10000 次循环后容量保持率为 70%)。动力学分析表明,Na(+) 存储是一个准电容主导过程,CNT 通过提供导电网络来提高准电容能量水平。