Lu Ying, Xu Jian-Long, Ren Shan, Zhong Ya-Nan, Gao Xu, Wang Sui-Dong
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
RSC Adv. 2018 Jun 1;8(36):20182-20189. doi: 10.1039/c8ra02951b. eCollection 2018 May 30.
Finding earth-abundant and high-performance electrode materials for supercapacitors is a demanding challenge in the energy storage field. Cuprous oxide (CuO) has attracted increasing attention due to its theoretically high specific capacitance, however, the development of CuO-based electrodes with superior capacitive performance is still challenging. We herein report a simple and effective ionic-liquid-assisted sputtering approach to synthesizing the CuO nanoparticles/multi-walled carbon nanotubes (CuO/MWCNTs) nanocomposite for high-performance asymmetric supercapacitors. The CuO/MWCNTs nanocomposite delivers a high specific capacitance of 357 F g, good rate capability and excellent capacitance retention of about 89% after 20 000 cycles at a current density of 10 A g. The high performance is attributed to the uniform dispersion of small-sized CuO nanoparticles on conductive MWCNTs, which offers plenty of redox active sites and thus improve the electron transfer efficiency. Oxygen vacancies are further introduced into CuO by the NaBH treatment, providing the oxygen-deficient CuO/MWCNTs (r-CuO/MWCNTs) nanocomposite with significantly improved specific capacitance (790 F g) and cycling stability (∼93% after 20 000 cycles). The assembled asymmetric supercapacitor based on the r-CuO/MWCNTs//activated carbon (AC) structure achieves a high energy density of 64.2 W h kg at 825.3 W kg, and long cycling life. This work may form a foundation for the development of both high capacity and high energy density supercapacitors by showcasing the great potential of earth-abundant Cu-based electrode materials.
寻找用于超级电容器的储量丰富且高性能的电极材料是储能领域一项艰巨的挑战。氧化亚铜(CuO)因其理论上的高比电容而受到越来越多的关注,然而,开发具有优异电容性能的CuO基电极仍然具有挑战性。我们在此报告一种简单有效的离子液体辅助溅射方法,用于合成用于高性能非对称超级电容器的CuO纳米颗粒/多壁碳纳米管(CuO/MWCNTs)纳米复合材料。CuO/MWCNTs纳米复合材料具有357 F g的高比电容、良好的倍率性能以及在10 A g电流密度下20000次循环后约89%的优异电容保持率。其高性能归因于小尺寸CuO纳米颗粒在导电MWCNTs上的均匀分散,这提供了大量的氧化还原活性位点,从而提高了电子转移效率。通过NaBH处理进一步将氧空位引入CuO中,为缺氧的CuO/MWCNTs(r-CuO/MWCNTs)纳米复合材料提供了显著提高的比电容(790 F g)和循环稳定性(20000次循环后约93%)。基于r-CuO/MWCNTs//活性炭(AC)结构组装的非对称超级电容器在825.3 W kg时实现了64.2 W h kg的高能量密度和长循环寿命。这项工作通过展示储量丰富的Cu基电极材料的巨大潜力,可能为高容量和高能量密度超级电容器的开发奠定基础。