Yao Jinli, Ma Fukun, Wang Yan-Jie, Zuo Yinzhe, Yan Wei
Department of Research and Development, Meijin Energy Ltd Beijing 100052 China
New Energy and Advanced Functional Materials Group, School of Materials Science and Engineering, Dongguan University of Technology Dongguan 523808 Guangdong China.
RSC Adv. 2022 Sep 23;12(42):27072-27081. doi: 10.1039/d2ra04622a. eCollection 2022 Sep 22.
The development of alternative anode materials to achieve high lithium-ion storage performance is crucial for the next-generation lithium-ion batteries (LIBs). In this study, a new anode material, Zn-defected GeZnON (GeZn ON), was rationally designed and successfully synthesized by a simple ammoniation and acid etching method. The introduced zinc vacancy can increase the capacity by more than 100%, originating from the additional space for the lithium-ion insertion. This GeZn ON particle anode delivers a high capacity (868 mA h g at 0.1 A g after 200 cycles) and ultralong cyclic stability (2000 cycles at 1.0 A g with a maintained capacity of 458.6 mA h g). Electrochemical kinetic analysis corroborates the enhanced pseudocapacitive contribution and lithium-ion reaction kinetics in the GeZn ON particle anode. Furthermore, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses at different electrochemical reaction states confirm the reversible intercalation lithium-ion storage mechanism of this GeZn ON particle anode. This study offers a new vision toward designing high-performance quaternary metallic oxynitride-based materials for large-scale energy storage applications.
开发替代负极材料以实现高锂离子存储性能对于下一代锂离子电池(LIB)至关重要。在本研究中,通过简单的氨化和酸蚀刻方法合理设计并成功合成了一种新型负极材料——锌缺陷的锗锌氮氧化物(GeZnON)。引入的锌空位可使容量增加100%以上,这源于锂离子嵌入的额外空间。这种GeZnON颗粒负极具有高容量(200次循环后在0.1 A g下为868 mA h g)和超长循环稳定性(在1.0 A g下循环2000次,容量保持在458.6 mA h g)。电化学动力学分析证实了GeZnON颗粒负极中赝电容贡献和锂离子反应动力学的增强。此外,在不同电化学反应状态下的X射线衍射(XRD)和X射线光电子能谱(XPS)分析证实了这种GeZnON颗粒负极的可逆嵌入锂离子存储机制。本研究为设计用于大规模储能应用的高性能四元金属氮氧化物基材料提供了新的视角。