Ruiz Nicolas, Filippi German J, Gagnière Bertrand, Bowen Mark, Robert Henri E
University Hospital Orthopaedic Department, Angers, France; Orthopaedic Department, North Mayenne Hospital, Mayenne, France.
Orthopaedic Department, North Mayenne Hospital, Mayenne, France; Hospital Universitario CEMIC, Buenos Aires, Argentina.
Arthroscopy. 2016 Jun;32(6):1053-62. doi: 10.1016/j.arthro.2016.02.017. Epub 2016 Apr 27.
To determine the respective functions of the anterior cruciate ligament (ACL) and the anterolateral structures (ALSs) in controlling the tibia's passive internal rotation (IR) with respect to the femur, under uniaxial rotation.
To test the function of the ACL and the anterolateral ligament (ALL) in IR, we designed a sequential transection study of the ACL and the anterolateral structures (including the ALL) in 24 cadaveric knees divided in 2 groups. Two sequences were conducted successively: group 1 (12 knees) in which the ACL was sectioned first followed by the ALS, and group 2 (12 knees) with reversed transections. Each knee, in neutral rotation position and at flexion angle of 30°, was subjected to a 5 Nm torsion torque of IR. IR was measured using a rotatory laximeter, the Rotam with a gyroscope's measurement accuracy of 0.1°. Laxities were compared using paired t test within each group and using t test between groups. Fisher exact test was used to compare proportions.
In group 1, IR increased from 22.1° ± 10.6° to 25.7° ± 10.9° after ACL transection then to 28.1° ± 10.5° after we sectioned the ALS. In group 2, IR increased from 22.5° ± 8.9° to 25.2° ± 8.4° after sectioning the ALS, then to 29.1° ± 8.8° after we sectioned the ACL. Total postsectioning increase in IR was 6.4° ± 2° in group 1, and 6.55° ± 0.9° in group 2. The IR increase after each stage of transection and final IR were statistically significant (P < .001).
In a pure rotational cadaveric test model, the ACL and the ALS contribute to resistance to passive IR of the knee.
In some specific clinical cases, peripheral lesions may be considered, and injuries to these structures may need to be addressed to improve results controlling postoperative IR.
确定在单轴旋转情况下,前交叉韧带(ACL)和前外侧结构(ALSs)在控制胫骨相对于股骨的被动内旋(IR)方面各自的作用。
为测试ACL和前外侧韧带(ALL)在IR中的作用,我们设计了一项对24具尸体膝关节进行ACL和前外侧结构(包括ALL)的序贯横断研究,将其分为2组。依次进行两个序列:第1组(12个膝关节)先切断ACL,然后切断ALS;第2组(12个膝关节)进行相反顺序的横断。每个膝关节处于中立旋转位置和30°屈曲角度时,施加5 Nm的IR扭转扭矩。使用旋转式松弛度测量仪Rotam测量IR,其陀螺仪测量精度为0.1°。每组内使用配对t检验比较松弛度,组间使用t检验。采用Fisher精确检验比较比例。
在第1组中,切断ACL后IR从22.1°±10.6°增加到25.7°±10.9°,切断ALS后增加到28.1°±10.5°。在第2组中,切断ALS后IR从22.5°±8.9°增加到25.2°±8.4°,切断ACL后增加到29.1°±8.8°。第1组切断后IR的总增加量为6.4°±2°,第2组为6.55°±0.9°。每个横断阶段后的IR增加以及最终的IR均具有统计学意义(P <.001)。
在纯旋转尸体测试模型中,ACL和ALS有助于抵抗膝关节的被动IR。
在某些特定临床病例中,可能需要考虑周围结构损伤,并且可能需要处理这些结构的损伤以改善术后IR控制效果。