Popescu Iuliana, Galice Samuel, Mohler Peter J, Despa Sanda
Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536, USA.
Department of Pharmacology, University of California Davis, Davis, CA 95616, USA.
Cardiovasc Res. 2016 Aug 1;111(3):287-94. doi: 10.1093/cvr/cvw093. Epub 2016 Apr 30.
Loss-of-function mutations in the cytoskeletal protein ankyrin-B (AnkB) cause ventricular tachyarrhythmias in humans. Previously, we found that a larger fraction of the sarcoplasmic reticulum (SR) Ca(2+) leak occurs through Ca(2+) sparks in AnkB-deficient (AnkB(+/-)) mice, which may contribute to arrhythmogenicity via Ca(2+) waves. Here, we investigated the mechanisms responsible for increased Ca(2+) spark frequency in AnkB(+/-) hearts.
Using immunoblots and phospho-specific antibodies, we found that phosphorylation of ryanodine receptors (RyRs) by CaMKII is enhanced in AnkB(+/-) hearts. In contrast, the PKA-mediated RyR phosphorylation was comparable in AnkB(+/-) and wild-type (WT) mice. CaMKII inhibition greatly reduced Ca(2+) spark frequency in myocytes from AnkB(+/-) mice but had little effect in the WT. Global activities of the major phosphatases PP1 and PP2A were similar in AnkB(+/-) and WT hearts, while CaMKII autophosphorylation, a marker of CaMKII activation, was increased in AnkB(+/-) hearts. Thus, CaMKII-dependent RyR hyperphosphorylation in AnkB(+/-) hearts is caused by augmented CaMKII activity. Intriguingly, CaMKII activation is limited to the sarcolemma-SR junctions since non-junctional CaMKII targets (phospholamban, HDAC4) are not hyperphosphorylated in AnkB(+/-) myocytes. This local CaMKII activation may be the consequence of elevated [Ca(2+)] in the junctional cleft caused by reduced Na(+)/Ca(2+) exchange activity. Indeed, using the RyR-targeted Ca(2+) sensor GCaMP2.2-FBKP12.6, we found that local junctional [Ca(2+)] is significantly elevated in AnkB(+/-) myocytes.
The increased incidence of pro-arrhythmogenic Ca(2+) sparks and waves in AnkB(+/-) hearts is due to enhanced CaMKII-mediated RyR phosphorylation, which is caused by higher junctional [Ca(2+)] and consequent local CaMKII activation.
细胞骨架蛋白锚蛋白B(AnkB)的功能丧失突变会导致人类室性心律失常。此前,我们发现,在缺乏AnkB(AnkB(+/-))的小鼠中,肌浆网(SR)钙(Ca(2+))泄漏的较大一部分是通过Ca(2+)火花发生的,这可能通过Ca(2+)波导致心律失常。在此,我们研究了AnkB(+/-)心脏中Ca(2+)火花频率增加的机制。
使用免疫印迹和磷酸化特异性抗体,我们发现CaMKII对兰尼碱受体(RyRs)的磷酸化在AnkB(+/-)心脏中增强。相比之下,蛋白激酶A(PKA)介导的RyR磷酸化在AnkB(+/-)和野生型(WT)小鼠中相当。抑制CaMKII可大大降低AnkB(+/-)小鼠心肌细胞中的Ca(2+)火花频率,但对WT小鼠几乎没有影响。主要磷酸酶PP1和PP2A的整体活性在AnkB(+/-)和WT心脏中相似,而CaMKII自身磷酸化(CaMKII激活的标志物)在AnkB(+/-)心脏中增加。因此,AnkB(+/-)心脏中CaMKII依赖性的RyR过度磷酸化是由CaMKII活性增强引起的。有趣的是,CaMKII激活仅限于肌膜-SR连接处,因为非连接性CaMKII靶点(受磷蛋白、HDAC4)在AnkB(+/-)心肌细胞中没有过度磷酸化。这种局部CaMKII激活可能是由于钠/钙交换活性降低导致连接间隙中[Ca(2+)]升高的结果。事实上,使用靶向RyR的Ca(2+)传感器GCaMP2.2-FBKP12.6,我们发现AnkB(+/-)心肌细胞中的局部连接[Ca(2+)]显著升高。
AnkB(+/-)心脏中致心律失常的Ca(2+)火花和波的发生率增加是由于CaMKII介导的RyR磷酸化增强,这是由更高的连接[Ca(2+)]和随之而来的局部CaMKII激活引起的。