Univ. Limoges, CNRS, ENSCI, SPCTS UMR 7315, F-87000 Limoges, France; Univ. Limoges, EA3842 Homéostasie cellulaire et pathologies, F-87000 Limoges, France.
CHU Limoges, Service de Chirurgie Maxillo-Faciale, F-87000 Limoges, France.
Acta Biomater. 2016 Jul 1;38:179-89. doi: 10.1016/j.actbio.2016.04.039. Epub 2016 Apr 27.
The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration.
An expedient and efficient method, using chick embryo chorioallantoic membrane (CAM) assays, has been set up to characterise quantitatively the angiogenesis and the vascular conduction in scaffolds. This approach complements the usual cell culture assays and could replace to a certain extent in vivo experiments. It was applied to silicon-substituted hydroxyapatite porous bioceramics with various pore shapes. The material was found to be biocompatible, allowing the conduction of blood vessels on its surface. The presence of pores does not influence the angiogenesis but the pore shape affects the blood vessel guidance and angio-conductive potential. Pores with triangular cross-section appear particularly attractive for the further design of scaffolds in order to promote their vascular colonisation and osteointegration and improve their performances.
骨填充大缺损支架的研制需要了解血管生成和血管导向,这是骨形成和愈合的关键过程。关于支架支持血管导向的能力的研究很少,这是非常重要的,因为它与血管网络的质量和分散有关。本工作报告了多孔硅取代羟磷灰石(SiHA)生物陶瓷血管生成的分析,以及利用鸡胚绒毛尿囊膜(CAM)实验的简便体外模型研究孔径形状对血管导向的影响。对血管化植入物的图像分析评估了血管密度、分形维数和血管直径在两个不同尺度(整个陶瓷和单独的孔),并对具有不同横截面几何形状(圆形、方形、菱形、三角形和星形)的模型 SiHA 陶瓷进行了分析。SiHA 是一种生物相容性材料,允许在其表面进行血管传导。孔径的存在并不影响与血管生成相关的参数(分支、分形维数),但孔径几何形状影响血管导向和血管传导能力(直径和汇聚到孔的血管数量)。测量的孔径横截面角度调节了汇聚到孔的血管数量和直径,其中三角形孔尤为有趣。这一结果将用于塑造具有特定多孔结构的陶瓷支架,以促进血管定植和骨整合。
利用鸡胚绒毛尿囊膜(CAM)实验建立了一种简便有效的方法,对支架中的血管生成和血管传导进行定量描述。这种方法补充了通常的细胞培养实验,在一定程度上可以替代体内实验。它应用于各种孔径形状的硅取代羟磷灰石多孔生物陶瓷。研究发现该材料具有生物相容性,允许在其表面进行血管传导。孔径的存在并不影响血管生成,但孔径形状影响血管导向和血管传导能力。具有三角形横截面的孔特别适合于进一步设计支架,以促进其血管定植和骨整合,提高其性能。