Harrison Rachael H, Steele Joseph A M, Chapman Robert, Gormley Adam J, Chow Lesley W, Mahat Muzamir M, Podhorska Lucia, Palgrave Robert G, Payne David J, Hettiaratchy Shehan P, Dunlop Iain E, Stevens Molly M
Department of Materials Imperial College London London SW7 2AZ UK; Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK; Department of Bioengineering Imperial College London London SW7 2AZ UK; Department of Plastic and Reconstructive Surgery Imperial College Healthcare NHS Trust Charing Cross Campus Fulham Palace Road London W6 8RF UK.
Department of Materials Imperial College London London SW7 2AZ UK; Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK; Department of Bioengineering Imperial College London London SW7 2AZ UK.
Adv Funct Mater. 2015 Sep;25(36):5748-5757. doi: 10.1002/adfm.201501277. Epub 2015 Aug 17.
Native tissues are typically heterogeneous and hierarchically organized, and generating scaffolds that can mimic these properties is critical for tissue engineering applications. By uniquely combining controlled radical polymerization (CRP), end-functionalization of polymers, and advanced electrospinning techniques, a modular and versatile approach is introduced to generate scaffolds with spatially organized functionality. Poly-ε-caprolactone is end functionalized with either a polymerization-initiating group or a cell-binding peptide motif cyclic Arg-Gly-Asp-Ser (cRGDS), and are each sequentially electrospun to produce zonally discrete bilayers within a continuous fiber scaffold. The polymerization-initiating group is then used to graft an antifouling polymer bottlebrush based on poly(ethylene glycol) from the fiber surface using CRP exclusively within one bilayer of the scaffold. The ability to include additional multifunctionality during CRP is showcased by integrating a biotinylated monomer unit into the polymerization step allowing postmodification of the scaffold with streptavidin-coupled moieties. These combined processing techniques result in an effective bilayered and dual-functionality scaffold with a cell-adhesive surface and an opposing antifouling non-cell-adhesive surface in zonally specific regions across the thickness of the scaffold, demonstrated through fluorescent labelling and cell adhesion studies. This modular and versatile approach combines strategies to produce scaffolds with tailorable properties for many applications in tissue engineering and regenerative medicine.
天然组织通常是异质的且具有层次结构,生成能够模拟这些特性的支架对于组织工程应用至关重要。通过独特地结合可控自由基聚合(CRP)、聚合物的末端功能化和先进的静电纺丝技术,引入了一种模块化且通用的方法来生成具有空间组织功能的支架。聚ε-己内酯用聚合引发基团或细胞结合肽基序环化精氨酸-甘氨酸-天冬氨酸-丝氨酸(cRGDS)进行末端功能化,然后分别依次进行静电纺丝,以在连续纤维支架内产生区域离散的双层结构。然后,仅在支架的一个双层结构内使用CRP,利用聚合引发基团从纤维表面接枝基于聚乙二醇的抗污聚合物刷。通过将生物素化单体单元整合到聚合步骤中,展示了在CRP过程中包含额外多功能性的能力,这允许用链霉亲和素偶联部分对支架进行后修饰。通过荧光标记和细胞粘附研究表明,这些组合加工技术产生了一种有效的双层双功能支架,在支架厚度的区域特异性区域中具有细胞粘附表面和相对的抗污非细胞粘附表面。这种模块化且通用的方法结合了多种策略,以生产具有可定制特性的支架,用于组织工程和再生医学中的许多应用。