Kasai H, Okada Y, Nishimura S, Rao M S, Reddy J K
Biology Division, National Cancer Center Research Institute, Tokyo, Japan.
Cancer Res. 1989 May 15;49(10):2603-5.
The mechanism by which nongenotoxic peroxisome proliferators induce hepatocellular carcinomas in rats and mice remains intriguing. The available experimental evidence suggests that the proliferation of peroxisomes and induction of peroxisome-associated enzymes results in oxidative stress which then leads to tumorigenesis. However, so far no direct evidence for oxidative DNA damage in livers of peroxisome proliferator-treated animals has been established. In the present study we have examined the DNA obtained from the livers of rats treated with ciprofibrate, a potent peroxisome proliferator, for variable periods of time for 8-hydroxydeoxyguanosine (8-OH-dG), an adduct that results from the damage of DNA caused by hydroxyl radical. Administration of ciprofibrate in diet at a concentration of 0.025% for 16, 28, 36, or 40 weeks resulted in progressive increases in the levels of 8-OH-dG. At 16, 28, and 40 weeks of ciprofibrate treatment, the 8-OH-dG in the liver DNA was significantly increased as compared to controls. This increase in 8-OH-dG levels is attributed to persistent peroxisome proliferation resulting from chronic ciprofibrate treatment as no increase in 8-OH-dG was found in liver DNA of rats that received a single large dose of ciprofibrate. The results of this study clearly demonstrate, for the first time, that persistent proliferation of peroxisomes leads to specific oxidative DNA damage.