Hoffmann Sandra, Clauss Sebastian, Berger Ina M, Weiß Birgit, Montalbano Antonino, Röth Ralph, Bucher Madeline, Klier Ina, Wakili Reza, Seitz Hervé, Schulze-Bahr Eric, Katus Hugo A, Flachsbart Friederike, Nebel Almut, Guenther Sabina Pw, Bagaev Erik, Rottbauer Wolfgang, Kääb Stefan, Just Steffen, Rappold Gudrun A
Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, INF 366, 69120, Heidelberg, Germany.
DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
Basic Res Cardiol. 2016 May;111(3):36. doi: 10.1007/s00395-016-0557-2. Epub 2016 Apr 30.
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia with a strong genetic component. Molecular pathways involving the homeodomain transcription factor Shox2 control the development and function of the cardiac conduction system in mouse and zebrafish. Here we report the analysis of human SHOX2 as a potential susceptibility gene for early-onset AF. To identify causal variants and define the underlying mechanisms, results from 378 patients with early-onset AF before the age of 60 years were analyzed and compared to 1870 controls or reference datasets. We identified two missense mutations (p.G81E, p.H283Q), that were predicted as damaging. Transactivation studies using SHOX2 targets and phenotypic rescue experiments in zebrafish demonstrated that the p.H283Q mutation severely affects SHOX2 pacemaker function. We also demonstrate an association between a 3'UTR variant c.*28T>C of SHOX2 and AF (p = 0.00515). Patients carrying this variant present significantly longer PR intervals. Mechanistically, this variant creates a functional binding site for hsa-miR-92b-5p. Circulating hsa-miR-92b-5p plasma levels were significantly altered in AF patients carrying the 3'UTR variant (p = 0.0095). Finally, we demonstrate significantly reduced SHOX2 expression levels in right atrial appendages of AF patients compared to patients with sinus rhythm. Together, these results suggest a genetic contribution of SHOX2 in early-onset AF.
心房颤动(AF)是最常见的心律失常,具有很强的遗传成分。涉及同源结构域转录因子Shox2的分子途径控制着小鼠和斑马鱼心脏传导系统的发育和功能。在此,我们报告对人类SHOX2作为早发性AF潜在易感基因的分析。为了确定因果变异并定义潜在机制,我们分析了378例60岁之前早发性AF患者的结果,并与1870例对照或参考数据集进行比较。我们鉴定出两个错义突变(p.G81E、p.H283Q),预测为有害突变。使用SHOX2靶点的反式激活研究以及斑马鱼中的表型拯救实验表明,p.H283Q突变严重影响SHOX2的起搏器功能。我们还证明SHOX2的3'UTR变异c.*28T>C与AF相关(p = 0.00515)。携带该变异的患者PR间期显著延长。从机制上讲,该变异为hsa-miR-92b-5p创造了一个功能性结合位点。携带3'UTR变异的AF患者循环hsa-miR-92b-5p血浆水平显著改变(p = 0.0095)。最后,我们证明与窦性心律患者相比,AF患者右心耳中SHOX2表达水平显著降低。总之,这些结果表明SHOX2在早发性AF中具有遗传作用。