Suppr超能文献

窦房结功能障碍:当前的认识和未来的方向。

Sinus node dysfunction: current understanding and future directions.

机构信息

School of Public Health, Texas A&M University, College Station, Texas.

Department of Medicine, Baylor College of Medicine, Houston, Texas.

出版信息

Am J Physiol Heart Circ Physiol. 2023 Mar 1;324(3):H259-H278. doi: 10.1152/ajpheart.00618.2022. Epub 2022 Dec 23.

Abstract

The sinoatrial node (SAN) is the primary pacemaker of the heart. Normal SAN function is crucial in maintaining proper cardiac rhythm and contraction. Sinus node dysfunction (SND) is due to abnormalities within the SAN, which can affect the heartbeat frequency, regularity, and the propagation of electrical pulses through the cardiac conduction system. As a result, SND often increases the risk of cardiac arrhythmias. SND is most commonly seen as a disease of the elderly given the role of degenerative fibrosis as well as other age-dependent changes in its pathogenesis. Despite the prevalence of SND, current treatment is limited to pacemaker implantation, which is associated with substantial medical costs and complications. Emerging evidence has identified various genetic abnormalities that can cause SND, shedding light on the molecular underpinnings of SND. Identification of these molecular mechanisms and pathways implicated in the pathogenesis of SND is hoped to identify novel therapeutic targets for the development of more effective therapies for this disease. In this review article, we examine the anatomy of the SAN and the pathophysiology and epidemiology of SND. We then discuss in detail the most common genetic mutations correlated with SND and provide our perspectives on future research and therapeutic opportunities in this field.

摘要

窦房结(SAN)是心脏的主要起搏点。正常的 SAN 功能对于维持适当的心律和收缩至关重要。窦房结功能障碍(SND)是由于 SAN 内的异常引起的,这会影响心跳频率、规律性以及电脉冲在心脏传导系统中的传播。因此,SND 常增加心律失常的风险。鉴于退行性纤维化以及发病机制中其他与年龄相关的变化,SND 最常见于老年人。尽管 SND 很普遍,但目前的治疗方法仅限于起搏器植入,这与大量的医疗费用和并发症有关。新出现的证据已经确定了各种可能导致 SND 的遗传异常,为 SND 的发病机制提供了分子基础。确定这些与 SND 发病机制相关的分子机制和途径有望为该疾病的治疗开发更有效的治疗方法确定新的治疗靶点。在这篇综述文章中,我们检查了 SAN 的解剖结构以及 SND 的病理生理学和流行病学。然后,我们详细讨论了与 SND 相关的最常见遗传突变,并对该领域的未来研究和治疗机会提出了我们的看法。

相似文献

1
Sinus node dysfunction: current understanding and future directions.
Am J Physiol Heart Circ Physiol. 2023 Mar 1;324(3):H259-H278. doi: 10.1152/ajpheart.00618.2022. Epub 2022 Dec 23.
2
Emerging Signaling Regulation of Sinoatrial Node Dysfunction.
Curr Cardiol Rep. 2023 Jul;25(7):621-630. doi: 10.1007/s11886-023-01885-8. Epub 2023 May 25.
3
Pharmacologic Approach to Sinoatrial Node Dysfunction.
Annu Rev Pharmacol Toxicol. 2021 Jan 6;61:757-778. doi: 10.1146/annurev-pharmtox-031120-115815. Epub 2020 Oct 5.
4
Sick sinus syndrome in HCN1-deficient mice.
Circulation. 2013 Dec 17;128(24):2585-94. doi: 10.1161/CIRCULATIONAHA.113.003712. Epub 2013 Nov 11.
5
Genetic Complexity of Sinoatrial Node Dysfunction.
Front Genet. 2021 Apr 1;12:654925. doi: 10.3389/fgene.2021.654925. eCollection 2021.
6
Relationship between two arrhythmias: sinus node dysfunction and atrial fibrillation.
Arch Med Res. 2014 May;45(4):351-5. doi: 10.1016/j.arcmed.2014.04.005. Epub 2014 May 11.
7
Oxidized CaMKII causes cardiac sinus node dysfunction in mice.
J Clin Invest. 2011 Aug;121(8):3277-88. doi: 10.1172/JCI57833. Epub 2011 Jul 25.
9
Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15617-22. doi: 10.1073/pnas.0805500105. Epub 2008 Oct 1.

引用本文的文献

3
Aging and sinus node dysfunction: mechanisms and future directions.
Clin Sci (Lond). 2025 Jun 11;139(11):577-93. doi: 10.1042/CS20231025.
4
Bradycardias in Patients with Pulmonary Hypertension-Prevalence, Pathophysiology and Clinical Relevance.
J Cardiovasc Dev Dis. 2025 Mar 28;12(4):120. doi: 10.3390/jcdd12040120.
5
Causality of Childhood and Adult Body Mass Index on Sick Sinus Syndrome: A Mendelian Randomization Study.
Cureus. 2025 Mar 20;17(3):e80913. doi: 10.7759/cureus.80913. eCollection 2025 Mar.
6
The Role of Electrophysiologic Study in Device Selection for Leadless Atrial Pacing.
Tex Heart Inst J. 2025 Mar 12;52(1):e248495. doi: 10.14503/THIJ-24-8495. eCollection 2025 Jan-Jun.
8
iPSC-Derived Biological Pacemaker-From Bench to Bedside.
Cells. 2024 Dec 11;13(24):2045. doi: 10.3390/cells13242045.
9
Mitochondrial dysfunction is a key link involved in the pathogenesis of sick sinus syndrome: a review.
Front Cardiovasc Med. 2024 Oct 29;11:1488207. doi: 10.3389/fcvm.2024.1488207. eCollection 2024.
10
Brazilian Guideline for Exercise Testing in Children and Adolescents - 2024.
Arq Bras Cardiol. 2024 Sep 16;121(8):e20240525. doi: 10.36660/abc.20240525.

本文引用的文献

1
Hippo-Yap Signaling Maintains Sinoatrial Node Homeostasis.
Circulation. 2022 Nov 29;146(22):1694-1711. doi: 10.1161/CIRCULATIONAHA.121.058777. Epub 2022 Nov 1.
2
The Central Brain of the Heart: The Sinoatrial Node.
JACC Clin Electrophysiol. 2022 Oct;8(10):1216-1218. doi: 10.1016/j.jacep.2022.08.016.
3
The Heart's Pacemaker Mimics Brain Cytoarchitecture and Function: Novel Interstitial Cells Expose Complexity of the SAN.
JACC Clin Electrophysiol. 2022 Oct;8(10):1191-1215. doi: 10.1016/j.jacep.2022.07.003. Epub 2022 Sep 28.
4
Disruption of mitochondria-sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure.
Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2206708119. doi: 10.1073/pnas.2206708119. Epub 2022 Aug 31.
6
Loss of Natriuretic Peptide Receptor C Enhances Sinoatrial Node Dysfunction in Aging and Frail Mice.
J Gerontol A Biol Sci Med Sci. 2022 May 5;77(5):902-908. doi: 10.1093/gerona/glab357.
7
What keeps us ticking? Sinoatrial node mechano-sensitivity: the grandfather clock of cardiac rhythm.
Biophys Rev. 2021 Sep 15;13(5):707-716. doi: 10.1007/s12551-021-00831-8. eCollection 2021 Oct.
8
Genetically engineered mice for combinatorial cardiovascular optobiology.
Elife. 2021 Oct 29;10:e67858. doi: 10.7554/eLife.67858.
9
Early-Onset Atrial Fibrillation and the Prevalence of Rare Variants in Cardiomyopathy and Arrhythmia Genes.
JAMA Cardiol. 2021 Dec 1;6(12):1371-1379. doi: 10.1001/jamacardio.2021.3370.
10
Bioengineering the Cardiac Conduction System: Advances in Cellular, Gene, and Tissue Engineering for Heart Rhythm Regeneration.
Front Bioeng Biotechnol. 2021 Aug 2;9:673477. doi: 10.3389/fbioe.2021.673477. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验