Kudalkar Emily M, Davis Trisha N, Asbury Charles L
Department of Biochemistry, University of Washington, Seattle, Washington 98195;
Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195.
Cold Spring Harb Protoc. 2016 May 2;2016(5):pdb.prot085563. doi: 10.1101/pdb.prot085563.
Here we present our standard protocol for studying the binding of kinetochore proteins to microtubules as a paradigm for designing single-molecule total internal reflection fluorescence (TIRF) microscopy experiments. Several aspects of this protocol require empirical optimization, including the method for anchoring the polymer or substrate to the coverslip, the type and amount of blocking protein to prevent nonspecific protein adsorption to the glass, the appropriate protein concentration, the laser power, and the duration of imaging. Our method uses bovine serum albumin and κ-casein as blocking agents to coat any imperfections in the coverslip silanization and thereby prevent protein adsorption to the coverslip. Protein concentration and duration of imaging must be optimized for each experiment and protein of interest. Ideally, a range is determined that allows for resolution of single complexes binding to microtubules to ensure proper measurement of kinetic off rates and diffusion along microtubules. Excessively high concentrations may lead to overlapping binding of proteins on microtubules, making it impossible to resolve single binding events. The duration of imaging must be long enough to capture very low off rates (long residence time on microtubules) and we typically image at 10 frames/sec for 200 sec. The laser power can be adjusted to prevent photobleaching, but must be high enough to achieve a sufficient signal/noise ratio.
在此,我们展示我们用于研究动粒蛋白与微管结合的标准方案,以此作为设计单分子全内反射荧光(TIRF)显微镜实验的范例。该方案的几个方面需要进行经验性优化,包括将聚合物或底物固定到盖玻片上的方法、用于防止非特异性蛋白质吸附到玻璃上的封闭蛋白的类型和用量、合适的蛋白质浓度、激光功率以及成像持续时间。我们的方法使用牛血清白蛋白和κ-酪蛋白作为封闭剂,以覆盖盖玻片硅烷化中的任何瑕疵,从而防止蛋白质吸附到盖玻片上。每个实验和感兴趣的蛋白质都必须优化蛋白质浓度和成像持续时间。理想情况下,要确定一个范围,以便能够分辨与微管结合的单个复合物,从而确保正确测量解离速率和沿微管的扩散。过高的浓度可能导致蛋白质在微管上的重叠结合,从而无法分辨单个结合事件。成像持续时间必须足够长,以捕捉非常低的解离速率(在微管上的长时间停留时间),我们通常以每秒10帧的速度成像200秒。激光功率可以进行调整以防止光漂白,但必须足够高以获得足够的信噪比。