Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Department of Chemistry and Nanoscience Centre, University of Copenhagen, Copenhagen 2100, Denmark.
J Phys Chem B. 2023 Mar 9;127(9):1922-1931. doi: 10.1021/acs.jpcb.2c07011. Epub 2023 Feb 28.
Macromolecules organize themselves into discrete membrane-less compartments. Mounting evidence has suggested that nucleosomes as well as DNA itself can undergo clustering or condensation to regulate genomic activity. Current in vitro condensation studies provide insight into the physical properties of condensates, such as surface tension and diffusion. However, methods that provide the resolution needed for complex kinetic studies of multicomponent condensation are desired. Here, we use a supported lipid bilayer platform in tandem with total internal reflection microscopy to observe the two-dimensional movement of DNA and nucleosomes at the single-molecule resolution. This dimensional reduction from three-dimensional studies allows us to observe the initial condensation events and dissolution of these early condensates in the presence of physiological condensing agents. Using polyamines, we observed that the initial condensation happens on a time scale of minutes while dissolution occurs within seconds upon charge inversion. Polyamine valency, DNA length, and GC content affect the threshold polyamine concentration for condensation. Protein-based nucleosome condensing agents, HP1α and Ki-67, have much lower threshold concentrations for condensation than charge-based condensing agents, with Ki-67 being the most effective, requiring as low as 100 pM for nucleosome condensation. In addition, we did not observe condensate dissolution even at the highest concentrations of HP1α and Ki-67 tested. We also introduce a two-color imaging scheme where nucleosomes of high density labeled in one color are used to demarcate condensate boundaries and identical nucleosomes of another color at low density can be tracked relative to the boundaries after Ki-67-mediated condensation. Our platform should enable the ultimate resolution of single molecules in condensation dynamics studies of chromatin components under defined physicochemical conditions.
大分子自行组织成离散的无膜隔室。越来越多的证据表明,核小体以及 DNA 本身可以发生聚集或浓缩,以调节基因组活性。目前的体外浓缩研究提供了对凝聚物物理性质的深入了解,例如表面张力和扩散。然而,人们希望开发出能够提供用于多组分凝聚复杂动力学研究所需分辨率的方法。在这里,我们使用支持脂质双层平台与全内反射显微镜结合,以单分子分辨率观察 DNA 和核小体的二维运动。与三维研究相比,这种维度的降低使我们能够观察到生理浓缩剂存在下这些早期凝聚物的初始凝聚事件和溶解。使用聚胺时,我们观察到初始凝聚发生在几分钟的时间尺度内,而在电荷反转时溶解则在几秒钟内发生。聚胺价态、DNA 长度和 GC 含量影响凝聚的聚胺临界浓度。基于蛋白质的核小体浓缩剂 HP1α 和 Ki-67 的凝聚临界浓度比基于电荷的浓缩剂低得多,其中 Ki-67 的效果最高,核小体凝聚所需的浓度低至 100 pM。此外,即使在测试的最高浓度的 HP1α 和 Ki-67 下,我们也没有观察到凝聚物的溶解。我们还引入了一种双色成像方案,其中用一种颜色标记高密度的核小体用于标记凝聚物边界,并且可以在 Ki-67 介导的凝聚后相对于边界跟踪另一种颜色的低密度相同核小体。我们的平台应该能够在定义的物理化学条件下对染色质成分的凝聚动力学研究中的单个分子进行最终分辨率的研究。