Suppr超能文献

单分子全内反射荧光显微镜

Single-Molecule Total Internal Reflection Fluorescence Microscopy.

作者信息

Kudalkar Emily M, Davis Trisha N, Asbury Charles L

机构信息

Department of Biochemistry, University of Washington, Seattle, Washington 98195;

Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195.

出版信息

Cold Spring Harb Protoc. 2016 May 2;2016(5):pdb.top077800. doi: 10.1101/pdb.top077800.

Abstract

The advent of total internal reflection fluorescence (TIRF) microscopy has permitted visualization of biological events on an unprecedented scale: the single-molecule level. Using TIRF, it is now possible to view complex biological interactions such as cargo transport by a single molecular motor or DNA replication in real time. TIRF allows for visualization of single molecules by eliminating out-of-focus fluorescence and enhancing the signal-to-noise ratio. TIRF has been instrumental for studying in vitro interactions and has also been successfully implemented in live-cell imaging. Visualization of cytoskeletal structures and dynamics at the plasma membrane, such as endocytosis, exocytosis, and adhesion, has become much clearer using TIRF microscopy. Thanks to recent advances in optics and commercial availability, TIRF microscopy is becoming an increasingly popular and user-friendly technique. In this introduction, we describe the fundamental properties of TIRF microscopy and the advantages of using TIRF for single-molecule investigation.

摘要

全内反射荧光(TIRF)显微镜的出现使人们能够以前所未有的规模——单分子水平观察生物事件。使用TIRF,现在可以实时观察复杂的生物相互作用,如单个分子马达的货物运输或DNA复制。TIRF通过消除离焦荧光并提高信噪比,实现了单分子的可视化。TIRF对研究体外相互作用起到了重要作用,并且也已成功应用于活细胞成像。利用TIRF显微镜,质膜上细胞骨架结构和动态变化(如内吞作用、外排作用和黏附)的可视化变得更加清晰。由于光学技术的最新进展以及商业可得性,TIRF显微镜正成为一种越来越受欢迎且用户友好的技术。在本引言中,我们描述了TIRF显微镜的基本特性以及使用TIRF进行单分子研究的优势。

相似文献

1
Single-Molecule Total Internal Reflection Fluorescence Microscopy.
Cold Spring Harb Protoc. 2016 May 2;2016(5):pdb.top077800. doi: 10.1101/pdb.top077800.
2
Coverslip Cleaning and Functionalization for Total Internal Reflection Fluorescence Microscopy.
Cold Spring Harb Protoc. 2016 May 2;2016(5):pdb.prot085548. doi: 10.1101/pdb.prot085548.
5
Microtubule dynamics at the cell cortex probed by TIRF microscopy.
Methods Cell Biol. 2010;97:91-109. doi: 10.1016/S0091-679X(10)97006-4.
8
Total internal reflection fluorescence (TIRF) microscopy.
Curr Protoc Microbiol. 2008 Aug;Chapter 2:Unit 2A.2.1-2A.2.22. doi: 10.1002/9780471729259.mc02a02s10.
9
Two-Color Single-Molecule Tracking in Live Cells.
Methods Mol Biol. 2017;1663:127-138. doi: 10.1007/978-1-4939-7265-4_11.
10
Studying Tau-Microtubule Interaction Using Single-Molecule TIRF Microscopy.
Methods Mol Biol. 2020;2101:77-91. doi: 10.1007/978-1-0716-0219-5_6.

引用本文的文献

1
Engineered Extracellular Vesicles as a New Class of Nanomedicine.
Chem Bio Eng. 2024 Oct 28;2(1):3-22. doi: 10.1021/cbe.4c00122. eCollection 2025 Jan 23.
2
Single-molecule imaging for investigating the transcriptional control.
Mol Cells. 2025 Feb;48(2):100179. doi: 10.1016/j.mocell.2025.100179. Epub 2025 Jan 13.
4
Exploring GPCR conformational dynamics using single-molecule fluorescence.
Methods. 2024 Jun;226:35-48. doi: 10.1016/j.ymeth.2024.03.011. Epub 2024 Apr 10.
5
Unravelling the Mystery inside Cells by Using Single-Molecule Fluorescence Imaging.
J Imaging. 2023 Sep 19;9(9):192. doi: 10.3390/jimaging9090192.
7
Rapid quantification of miRNAs using dynamic FRET-FISH.
Commun Biol. 2022 Oct 7;5(1):1072. doi: 10.1038/s42003-022-04036-x.
8
A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices.
Micromachines (Basel). 2022 Jun 18;13(6):968. doi: 10.3390/mi13060968.
9
Single-molecule fluorescence vistas of how lipids regulate membrane proteins.
Biochem Soc Trans. 2021 Aug 27;49(4):1685-1694. doi: 10.1042/BST20201074.

本文引用的文献

1
Data Analysis for Total Internal Reflection Fluorescence Microscopy.
Cold Spring Harb Protoc. 2016 May 2;2016(5):2016/5/pdb.prot085571. doi: 10.1101/pdb.prot085571.
2
Preparation of Reactions for Imaging with Total Internal Reflection Fluorescence Microscopy.
Cold Spring Harb Protoc. 2016 May 2;2016(5):pdb.prot085563. doi: 10.1101/pdb.prot085563.
3
Coverslip Cleaning and Functionalization for Total Internal Reflection Fluorescence Microscopy.
Cold Spring Harb Protoc. 2016 May 2;2016(5):pdb.prot085548. doi: 10.1101/pdb.prot085548.
4
Ordered and dynamic assembly of single spliceosomes.
Science. 2011 Mar 11;331(6022):1289-95. doi: 10.1126/science.1198830.
5
Uncoupling of sister replisomes during eukaryotic DNA replication.
Mol Cell. 2010 Dec 10;40(5):834-40. doi: 10.1016/j.molcel.2010.11.027.
6
Real-time single-molecule observation of rolling-circle DNA replication.
Nucleic Acids Res. 2009 Mar;37(4):e27. doi: 10.1093/nar/gkp006. Epub 2009 Jan 20.
7
Tracking single Kinesin molecules in the cytoplasm of mammalian cells.
Biophys J. 2007 Jun 15;92(12):4137-44. doi: 10.1529/biophysj.106.100206. Epub 2007 Mar 30.
8
Subunit counting in membrane-bound proteins.
Nat Methods. 2007 Apr;4(4):319-21. doi: 10.1038/nmeth1024. Epub 2007 Mar 18.
9
Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization.
Science. 2003 Jun 27;300(5628):2061-5. doi: 10.1126/science.1084398. Epub 2003 Jun 5.
10
Combined optical trapping and single-molecule fluorescence.
J Biol. 2003;2(1):6. doi: 10.1186/1475-4924-2-6. Epub 2003 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验