Suppr超能文献

量化分子亚组中的治疗获益以评估预测性生物标志物。

Quantifying Treatment Benefit in Molecular Subgroups to Assess a Predictive Biomarker.

作者信息

Iasonos Alexia, Chapman Paul B, Satagopan Jaya M

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.

出版信息

Clin Cancer Res. 2016 May 1;22(9):2114-20. doi: 10.1158/1078-0432.CCR-15-2517.

Abstract

An increased interest has been expressed in finding predictive biomarkers that can guide treatment options for both mutation carriers and noncarriers. The statistical assessment of variation in treatment benefit (TB) according to the biomarker carrier status plays an important role in evaluating predictive biomarkers. For time-to-event endpoints, the hazard ratio (HR) for interaction between treatment and a biomarker from a proportional hazards regression model is commonly used as a measure of variation in TB. Although this can be easily obtained using available statistical software packages, the interpretation of HR is not straightforward. In this article, we propose different summary measures of variation in TB on the scale of survival probabilities for evaluating a predictive biomarker. The proposed summary measures can be easily interpreted as quantifying differential in TB in terms of relative risk or excess absolute risk due to treatment in carriers versus noncarriers. We illustrate the use and interpretation of the proposed measures with data from completed clinical trials. We encourage clinical practitioners to interpret variation in TB in terms of measures based on survival probabilities, particularly in terms of excess absolute risk, as opposed to HR. Clin Cancer Res; 22(9); 2114-20. ©2016 AACR.

摘要

人们对寻找能够指导突变携带者和非携带者治疗方案的预测性生物标志物的兴趣日益浓厚。根据生物标志物携带状态对治疗获益(TB)差异进行统计学评估在评估预测性生物标志物中起着重要作用。对于事件发生时间终点,比例风险回归模型中治疗与生物标志物之间相互作用的风险比(HR)通常用作治疗获益差异的度量。尽管使用现有的统计软件包可以轻松获得该值,但HR的解释并不直观。在本文中,我们提出了基于生存概率尺度的治疗获益差异的不同汇总度量,用于评估预测性生物标志物。所提出的汇总度量可以很容易地解释为量化携带者与非携带者因治疗导致的相对风险或绝对风险增加方面的治疗获益差异。我们用来自已完成临床试验的数据说明了所提出度量的使用和解释。我们鼓励临床医生根据基于生存概率的度量来解释治疗获益差异,特别是在绝对风险增加方面,而不是使用HR。《临床癌症研究》;22(9);2114 - 20。©2016美国癌症研究协会。

相似文献

1
Quantifying Treatment Benefit in Molecular Subgroups to Assess a Predictive Biomarker.
Clin Cancer Res. 2016 May 1;22(9):2114-20. doi: 10.1158/1078-0432.CCR-15-2517.
2
Measuring differential treatment benefit across marker specific subgroups: The choice of outcome scale.
Contemp Clin Trials. 2017 Dec;63:40-50. doi: 10.1016/j.cct.2017.02.007. Epub 2017 Feb 22.
3
Strategies for power calculations in predictive biomarker studies in survival data.
Oncotarget. 2016 Dec 6;7(49):80373-80381. doi: 10.18632/oncotarget.12124.
5
Estimation of predictive accuracy in survival analysis using R and S-PLUS.
Comput Methods Programs Biomed. 2007 Aug;87(2):132-7. doi: 10.1016/j.cmpb.2007.05.009. Epub 2007 Jun 29.
7
Identifying cut points for biomarker defined subset effects in clinical trials with survival endpoints.
Contemp Clin Trials. 2014 Jul;38(2):333-7. doi: 10.1016/j.cct.2014.06.005. Epub 2014 Jun 16.
10
Extensions of the absolute standardized hazard ratio and connections with measures of explained variation and variable importance.
Lifetime Data Anal. 2020 Oct;26(4):872-892. doi: 10.1007/s10985-020-09504-2. Epub 2020 Jul 23.

引用本文的文献

1
Genetic variants of FER and SULF1 in the fibroblast-related genes are associated with non-small-cell lung cancer survival.
Int J Cancer. 2025 Jun 1;156(11):2107-2117. doi: 10.1002/ijc.35305. Epub 2024 Dec 20.
4
Time to publication of oncology trials and why some trials are never published.
PLoS One. 2017 Sep 21;12(9):e0184025. doi: 10.1371/journal.pone.0184025. eCollection 2017.
5
Survival of Patients with Serous Uterine Carcinoma Undergoing Sentinel Lymph Node Mapping.
Ann Surg Oncol. 2017 Jul;24(7):1965-1971. doi: 10.1245/s10434-017-5816-4. Epub 2017 Mar 3.
6
Measuring differential treatment benefit across marker specific subgroups: The choice of outcome scale.
Contemp Clin Trials. 2017 Dec;63:40-50. doi: 10.1016/j.cct.2017.02.007. Epub 2017 Feb 22.

本文引用的文献

1
Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma.
N Engl J Med. 2015 Jul 2;373(1):23-34. doi: 10.1056/NEJMoa1504030. Epub 2015 May 31.
2
Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial.
J Clin Oncol. 2015 May 1;33(13):1430-7. doi: 10.1200/JCO.2014.59.0703. Epub 2014 Dec 1.
3
Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis.
J Clin Oncol. 2014 Aug 1;32(22):2380-5. doi: 10.1200/JCO.2014.55.2208. Epub 2014 Jun 30.
4
Progression of RAS-mutant leukemia during RAF inhibitor treatment.
N Engl J Med. 2012 Dec 13;367(24):2316-21. doi: 10.1056/NEJMoa1208958. Epub 2012 Nov 7.
5
Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.
N Engl J Med. 2012 Jun 28;366(26):2443-54. doi: 10.1056/NEJMoa1200690. Epub 2012 Jun 2.
6
Helping patients decide: ten steps to better risk communication.
J Natl Cancer Inst. 2011 Oct 5;103(19):1436-43. doi: 10.1093/jnci/djr318. Epub 2011 Sep 19.
7
The numbers game: the risky business of projecting risk.
J Natl Cancer Inst. 2011 Jul 6;103(13):992-3. doi: 10.1093/jnci/djr222. Epub 2011 Jun 24.
8
Risk factor modification and projections of absolute breast cancer risk.
J Natl Cancer Inst. 2011 Jul 6;103(13):1037-48. doi: 10.1093/jnci/djr172. Epub 2011 Jun 24.
9
Personalized estimates of breast cancer risk in clinical practice and public health.
Stat Med. 2011 May 10;30(10):1090-104. doi: 10.1002/sim.4187. Epub 2011 Feb 21.
10
The meaning of interaction.
Hum Hered. 2010;70(4):269-77. doi: 10.1159/000321967. Epub 2010 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验