Suppr超能文献

衡量不同标志物特定亚组间的治疗差异获益:结局量表的选择。

Measuring differential treatment benefit across marker specific subgroups: The choice of outcome scale.

作者信息

Satagopan Jaya M, Iasonos Alexia

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Avenue, New York, NY 10017, United States.

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Avenue, New York, NY 10017, United States.

出版信息

Contemp Clin Trials. 2017 Dec;63:40-50. doi: 10.1016/j.cct.2017.02.007. Epub 2017 Feb 22.

Abstract

Clinical and epidemiological studies of anticancer therapies increasingly seek to identify predictive biomarkers to obtain insights into variation in treatment benefit. For time to event endpoints, a predictive biomarker is typically assessed using the interaction between the biomarker and treatment in a proportional hazards model. Interactions are contrasts of summaries of outcomes and depend upon the choice of the outcome scale. In this paper, we investigate interaction contrasts under three scales - the natural logarithm of hazard ratio, the natural logarithm of survival probability, and survival probability at a pre-specified time. We illustrate that we can have a non-zero interaction on survival or logarithm of survival probability scales even when there is no interaction on the logarithm of hazard ratio scale. Since survival probabilities have clinically useful interpretation and are easier to convey to patients than hazard ratios, we recommend evaluating a predictive biomarker using survival probabilities. We provide empirical illustration of the three scales of interaction for evaluating a predictive biomarker using reconstructed data from a published melanoma study.

摘要

抗癌疗法的临床和流行病学研究越来越多地寻求识别预测性生物标志物,以深入了解治疗效果的差异。对于事件发生时间终点,通常在比例风险模型中使用生物标志物与治疗之间的相互作用来评估预测性生物标志物。相互作用是结果摘要的对比,并且取决于结果量表的选择。在本文中,我们研究了三种量表下的相互作用对比——风险比的自然对数、生存概率的自然对数以及预先指定时间的生存概率。我们表明,即使在风险比对数量表上没有相互作用,在生存或生存概率对数量表上也可能存在非零相互作用。由于生存概率具有临床有用的解释,并且比风险比更容易向患者传达,因此我们建议使用生存概率来评估预测性生物标志物。我们使用来自一项已发表的黑色素瘤研究的重建数据,对评估预测性生物标志物的三种相互作用量表进行了实证说明。

相似文献

1
Measuring differential treatment benefit across marker specific subgroups: The choice of outcome scale.
Contemp Clin Trials. 2017 Dec;63:40-50. doi: 10.1016/j.cct.2017.02.007. Epub 2017 Feb 22.
2
Quantifying Treatment Benefit in Molecular Subgroups to Assess a Predictive Biomarker.
Clin Cancer Res. 2016 May 1;22(9):2114-20. doi: 10.1158/1078-0432.CCR-15-2517.
3
Biomarker threshold adaptive designs for survival endpoints.
J Biopharm Stat. 2018;28(6):1038-1054. doi: 10.1080/10543406.2018.1434191. Epub 2018 Feb 13.
4
Oncogenic targets, magnitude of benefit, and market pricing of antineoplastic drugs.
J Clin Oncol. 2011 Jun 20;29(18):2543-9. doi: 10.1200/JCO.2011.35.2393. Epub 2011 May 23.
6
Strategies for power calculations in predictive biomarker studies in survival data.
Oncotarget. 2016 Dec 6;7(49):80373-80381. doi: 10.18632/oncotarget.12124.
8
Sample size and threshold estimation for clinical trials with predictive biomarkers.
Contemp Clin Trials. 2013 Nov;36(2):664-72. doi: 10.1016/j.cct.2013.09.005. Epub 2013 Sep 21.
10
Biomarker-based Bayesian randomized phase II clinical trial design to identify a sensitive patient subpopulation.
Stat Med. 2014 Oct 15;33(23):4008-16. doi: 10.1002/sim.6209. Epub 2014 May 13.

引用本文的文献

本文引用的文献

1
A reconstructed melanoma data set for evaluating differential treatment benefit according to biomarker subgroups.
Data Brief. 2017 May 5;12:667-675. doi: 10.1016/j.dib.2017.05.005. eCollection 2017 Jun.
2
Quantifying Treatment Benefit in Molecular Subgroups to Assess a Predictive Biomarker.
Clin Cancer Res. 2016 May 1;22(9):2114-20. doi: 10.1158/1078-0432.CCR-15-2517.
3
Biomarker: Predictive or Prognostic?
J Clin Oncol. 2015 Nov 20;33(33):3968-71. doi: 10.1200/JCO.2015.63.3651. Epub 2015 Sep 21.
4
Prognostic and Predictive Values and Statistical Interactions in the Era of Targeted Treatment.
Genet Epidemiol. 2015 Nov;39(7):509-17. doi: 10.1002/gepi.21917. Epub 2015 Sep 9.
5
Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma.
N Engl J Med. 2015 Jul 2;373(1):23-34. doi: 10.1056/NEJMoa1504030. Epub 2015 May 31.
6
Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis.
J Clin Oncol. 2014 Aug 1;32(22):2380-5. doi: 10.1200/JCO.2014.55.2208. Epub 2014 Jun 30.
7
Statistical and practical considerations for clinical evaluation of predictive biomarkers.
J Natl Cancer Inst. 2013 Nov 20;105(22):1677-83. doi: 10.1093/jnci/djt282. Epub 2013 Oct 17.
9
Evaluation of removable statistical interaction for binary traits.
Stat Med. 2013 Mar 30;32(7):1164-90. doi: 10.1002/sim.5628. Epub 2012 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验