Wu Jiang, Xiao Zecong, He Chaochao, Zhu Jingjing, Ma Guanglong, Wang Guangzhi, Zhang Hongyu, Xiao Jian, Chen Shengfu
Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
Acta Biomater. 2016 Aug;40:172-181. doi: 10.1016/j.actbio.2016.04.045. Epub 2016 Apr 30.
Nonfouling materials such as neutral poly(ethylene glycol) (PEG) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA) are ideal biocompatible materials for drug, especially protein drug delivery. The interaction behavior of protein between the nonfouling materials could cause great impact on their future applications, such as controlled release drug delivery systems. In this work, we investigated the diffusion behavior of the fluorescence-labeled model proteins (bovine serum albumin (BSA) and lysozyme (LYZ)) in nonfouling PEG, pSBMA and mixed PEG-SBMA hydrogels (SBMA:PEG 4:1, SBMA:PEG 1:4). It was observed that these four hydrogels showed varied diffusion behavior for either negatively charged BSA or positively charged LYZ due to protein-polymer interaction and the free water content in hydrogel matrix. The relatively stronger interaction between protein-PEG than protein-pSBMA could increase protein loading efficiency and control release rate by changing ratio of PEG to SBMA in the hybrid hydrogel. Moreover, it is further demonstrated the free water (freezable water) content in low cross-linked hydrogel, not the equilibrium water content (EWC), is a more accurate parameter to reflect the diffusion behavior of protein molecules. Thus, these results together provide new insights of the interactions between protein molecules and nonfouling polymers as well as the bio applications of the nonfouling polymeric hydrogels.
This work shows that the relative stronger interaction between protein-PEG than protein-pSBMA could increase protein loading efficiency and control release rate by the change ratio of PEG to SBMA in the hydrogel, while the free water (freezable water) content in low cross-linked hydrogel, not the equilibrium water content (EWC), is a more accurate parameter to reflect the diffusion behavior of protein molecules. The impact of this work (i) gains some new insights of the interactions between protein molecules and nonfouling polymer matrixes for protein drug delivery; (ii) prompts to apply the weak PEG-protein interactions to protein drug loading and release; (iii) provides a new fundamental understanding of free water in hydrogel for protein diffusion.
中性聚乙二醇(PEG)和两性离子聚(甲基丙烯酸磺酸甜菜碱)(pSBMA)等抗污材料是用于药物尤其是蛋白质药物递送的理想生物相容性材料。蛋白质在抗污材料之间的相互作用行为可能对其未来应用产生重大影响,如控释药物递送系统。在这项工作中,我们研究了荧光标记的模型蛋白(牛血清白蛋白(BSA)和溶菌酶(LYZ))在抗污PEG、pSBMA以及混合PEG-SBMA水凝胶(SBMA:PEG 4:1,SBMA:PEG 1:4)中的扩散行为。观察到由于蛋白质-聚合物相互作用以及水凝胶基质中的自由水含量,这四种水凝胶对带负电荷的BSA或带正电荷的LYZ均表现出不同的扩散行为。蛋白质与PEG之间相对较强的相互作用比蛋白质与pSBMA之间的相互作用,可通过改变杂化水凝胶中PEG与SBMA的比例来提高蛋白质负载效率并控制释放速率。此外,进一步证明了低交联水凝胶中的自由水(可冻结水)含量而非平衡水含量(EWC)是反映蛋白质分子扩散行为的更准确参数。因此,这些结果共同为蛋白质分子与抗污聚合物之间的相互作用以及抗污聚合物水凝胶的生物应用提供了新的见解。
这项工作表明,蛋白质与PEG之间相对较强的相互作用比蛋白质与pSBMA之间的相互作用,可通过改变水凝胶中PEG与SBMA的比例来提高蛋白质负载效率并控制释放速率,而低交联水凝胶中的自由水(可冻结水)含量而非平衡水含量(EWC)是反映蛋白质分子扩散行为的更准确参数。这项工作的影响在于:(i)获得了蛋白质分子与用于蛋白质药物递送的抗污聚合物基质之间相互作用的一些新见解;(ii)促使将弱PEG-蛋白质相互作用应用于蛋白质药物的负载和释放;(iii)为水凝胶中蛋白质扩散的自由水提供了新的基本认识。