Baillergeau M, Maussang K, Nirrengarten T, Palomo J, Li L H, Linfield E H, Davies A G, Dhillon S, Tignon J, Mangeney J
Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P. et M. Curie, Université D. Diderot, 75231 Paris Cedex 05, France.
School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS29JT, UK.
Sci Rep. 2016 May 4;6:24811. doi: 10.1038/srep24811.
Diffraction is the ultimate limit at which details of objects can be resolved in conventional optical spectroscopy and imaging systems. In the THz spectral range, spectroscopy systems increasingly rely on ultra-broadband radiation (extending over more 5 octaves) making a great challenge to reach resolution limited by diffraction. Here, we propose an original easy-to-implement wavefront manipulation concept to achieve ultrabroadband THz spectroscopy system with diffraction-limited resolution. Applying this concept to a large-area photoconductive emitter, we demonstrate diffraction-limited ultra-broadband spectroscopy system up to 14.5 THz with a dynamic range of 10(3). The strong focusing of ultrabroadband THz radiation provided by our approach is essential for investigating single micrometer-scale objects such as graphene flakes or living cells, and besides for achieving intense ultra-broadband THz electric fields.
在传统光学光谱学和成像系统中,衍射是分辨物体细节的最终极限。在太赫兹光谱范围内,光谱学系统越来越依赖超宽带辐射(扩展超过5个倍频程),这给达到受衍射限制的分辨率带来了巨大挑战。在此,我们提出一种原创的、易于实现的波前操纵概念,以实现具有衍射极限分辨率的超宽带太赫兹光谱系统。将这一概念应用于大面积光电导发射器,我们展示了高达14.5太赫兹、动态范围为10³的衍射极限超宽带光谱系统。我们的方法所提供的超宽带太赫兹辐射的强聚焦,对于研究单个微米级物体(如石墨烯薄片或活细胞)至关重要,此外对于实现强超宽带太赫兹电场也很重要。