Suppr超能文献

高频刺激背柱轴突:无刺痛性神经病理性疼痛缓解的潜在机制。

High-Frequency Stimulation of Dorsal Column Axons: Potential Underlying Mechanism of Paresthesia-Free Neuropathic Pain Relief.

机构信息

Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA.

Department of Neurosurgery, Harvard Medical School, Boston, MA, USA.

出版信息

Neuromodulation. 2016 Jun;19(4):385-97. doi: 10.1111/ner.12436. Epub 2016 May 4.

Abstract

OBJECTIVE

Spinal cord stimulation (SCS) treats neuropathic pain through retrograde stimulation of dorsal column axons and their inhibitory effects on wide dynamic range (WDR) neurons. Typical SCS uses frequencies from 50-100 Hz. Newer stimulation paradigms use high-frequency stimulation (HFS) up to 10 kHz and produce pain relief but without paresthesia. Our hypothesis is that HFS preferentially blocks larger diameter axons (12-15 µm) based on dynamics of ion channel gates and the electric potential gradient seen along the axon, resulting in inhibition of WDR cells without paresthesia.

METHODS

We input field potential values from a finite element model of SCS into an active axon model with ion channel subcomponents for fiber diameters 1-20 µm and simulated dynamics on a 0.001 msec time scale.

RESULTS

Assuming some degree of wave rectification seen at the axon, action potential (AP) blockade occurs as hypothesized, preferentially in larger over smaller diameters with blockade in most medium and large diameters occurring between 4.5 and 10 kHz. Simulations show both ion channel gate and virtual anode dynamics are necessary.

CONCLUSION

At clinical HFS frequencies and pulse widths, HFS preferentially blocks larger-diameter fibers and concomitantly recruits medium and smaller fibers. These effects are a result of interaction between ion gate dynamics and the "activating function" (AF) deriving from current distribution over the axon. The larger fibers that cause paresthesia in low-frequency simulation are blocked, while medium and smaller fibers are recruited, leading to paresthesia-free neuropathic pain relief by inhibiting WDR cells.

摘要

目的

脊髓刺激(SCS)通过逆行刺激背柱轴突及其对宽动态范围(WDR)神经元的抑制作用来治疗神经性疼痛。典型的 SCS 使用 50-100 Hz 的频率。较新的刺激模式使用高达 10 kHz 的高频刺激(HFS)并产生缓解疼痛的效果,但没有感觉异常。我们的假设是,HFS 基于离子通道门的动力学和沿轴突观察到的电势梯度,优先阻断较大直径的轴突(12-15 µm),从而抑制 WDR 细胞而不产生感觉异常。

方法

我们将 SCS 的有限元模型中的场电势值输入到具有离子通道子组件的活动轴突模型中,用于直径为 1-20 µm 的纤维,并在 0.001 msec 的时间尺度上模拟动力学。

结果

假设在轴突上观察到一定程度的波整流,动作电位(AP)阻断如假设发生,优先在较大直径的纤维上发生,而在大多数中大和大直径纤维上的阻断发生在 4.5 到 10 kHz 之间。模拟表明,离子通道门和虚拟阳极动力学都是必需的。

结论

在临床 HFS 频率和脉冲宽度下,HFS 优先阻断较大直径的纤维,并同时募集中大和较小的纤维。这些效应是离子门动力学与源自电流在轴突上分布的“激活函数”(AF)相互作用的结果。在低频模拟中引起感觉异常的较大纤维被阻断,而中大和较小的纤维被募集,从而通过抑制 WDR 细胞来实现无感觉异常的神经性疼痛缓解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验