Zhao Tingting, Ruan Dan
Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA.
Phys Med Biol. 2016 Jun 7;61(11):4223-34. doi: 10.1088/0031-9155/61/11/4223. Epub 2016 May 18.
Picking geometrically relevant atlases from the whole training set is crucial to multi-atlas based image segmentation, especially with extensive data of heterogeneous quality in the Big Data era. Unfortunately, there is very limited understanding of how currently used image similarity criteria reveal geometric relevance, let alone the optimization of them. This paper aims to develop a good image based surrogate relevance criterion to best reflect the underlying inaccessible geometric relevance in a learning context. We cast this surrogate learning problem into an optimization framework, by encouraging the image based surrogate to behave consistently with geometric relevance during training. In particular, we desire a criterion to be small for image pairs with similar geometry and large for those with significantly different segmentation geometry. Validation experiments on corpus callosum segmentation demonstrate the improved quality of the learned surrogate compared to benchmark surrogate candidates.
从整个训练集中挑选出几何相关的图谱对于基于多图谱的图像分割至关重要,特别是在大数据时代存在大量质量参差不齐的数据的情况下。不幸的是,目前对于常用的图像相似性标准如何揭示几何相关性的理解非常有限,更不用说对其进行优化了。本文旨在开发一种基于图像的良好替代相关性标准,以在学习环境中最佳地反映潜在的难以获取的几何相关性。我们通过在训练过程中鼓励基于图像的替代物与几何相关性保持一致,将这个替代学习问题转化为一个优化框架。具体而言,我们希望对于具有相似几何形状的图像对该标准值较小,而对于具有显著不同分割几何形状的图像对该标准值较大。在胼胝体分割上的验证实验表明,与基准替代候选物相比,所学习到的替代物质量有所提高。