Suppr超能文献

使用orCaScore框架对心脏CT的自动冠状动脉钙化评分方法进行评估。

An evaluation of automatic coronary artery calcium scoring methods with cardiac CT using the orCaScore framework.

作者信息

Wolterink Jelmer M, Leiner Tim, de Vos Bob D, Coatrieux Jean-Louis, Kelm B Michael, Kondo Satoshi, Salgado Rodrigo A, Shahzad Rahil, Shu Huazhong, Snoeren Miranda, Takx Richard A P, van Vliet Lucas J, van Walsum Theo, Willems Tineke P, Yang Guanyu, Zheng Yefeng, Viergever Max A, Išgum Ivana

机构信息

Image Sciences Institute, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands.

Department of Radiology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands.

出版信息

Med Phys. 2016 May;43(5):2361. doi: 10.1118/1.4945696.

Abstract

PURPOSE

The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular disease (CVD) events. In clinical practice, CAC is manually identified and automatically quantified in cardiac CT using commercially available software. This is a tedious and time-consuming process in large-scale studies. Therefore, a number of automatic methods that require no interaction and semiautomatic methods that require very limited interaction for the identification of CAC in cardiac CT have been proposed. Thus far, a comparison of their performance has been lacking. The objective of this study was to perform an independent evaluation of (semi)automatic methods for CAC scoring in cardiac CT using a publicly available standardized framework.

METHODS

Cardiac CT exams of 72 patients distributed over four CVD risk categories were provided for (semi)automatic CAC scoring. Each exam consisted of a noncontrast-enhanced calcium scoring CT (CSCT) and a corresponding coronary CT angiography (CCTA) scan. The exams were acquired in four different hospitals using state-of-the-art equipment from four major CT scanner vendors. The data were divided into 32 training exams and 40 test exams. A reference standard for CAC in CSCT was defined by consensus of two experts following a clinical protocol. The framework organizers evaluated the performance of (semi)automatic methods on test CSCT scans, per lesion, artery, and patient.

RESULTS

Five (semi)automatic methods were evaluated. Four methods used both CSCT and CCTA to identify CAC, and one method used only CSCT. The evaluated methods correctly detected between 52% and 94% of CAC lesions with positive predictive values between 65% and 96%. Lesions in distal coronary arteries were most commonly missed and aortic calcifications close to the coronary ostia were the most common false positive errors. The majority (between 88% and 98%) of correctly identified CAC lesions were assigned to the correct artery. Linearly weighted Cohen's kappa for patient CVD risk categorization by the evaluated methods ranged from 0.80 to 1.00.

CONCLUSIONS

A publicly available standardized framework for the evaluation of (semi)automatic methods for CAC identification in cardiac CT is described. An evaluation of five (semi)automatic methods within this framework shows that automatic per patient CVD risk categorization is feasible. CAC lesions at ambiguous locations such as the coronary ostia remain challenging, but their detection had limited impact on CVD risk determination.

摘要

目的

冠状动脉钙化(CAC)量是心血管疾病(CVD)事件的一个强有力的独立预测指标。在临床实践中,使用商用软件在心脏CT中手动识别并自动量化CAC。在大规模研究中,这是一个繁琐且耗时的过程。因此,已经提出了许多无需交互的自动方法和在心脏CT中识别CAC时需要非常有限交互的半自动方法。到目前为止,缺乏对它们性能的比较。本研究的目的是使用公开可用的标准化框架对心脏CT中CAC评分的(半)自动方法进行独立评估。

方法

提供了分布在四个CVD风险类别的72例患者的心脏CT检查用于(半)自动CAC评分。每次检查包括一次非增强钙评分CT(CSCT)和一次相应的冠状动脉CT血管造影(CCTA)扫描。这些检查是在四家不同的医院使用来自四家主要CT扫描仪供应商的先进设备进行的。数据被分为32次训练检查和40次测试检查。CSCT中CAC的参考标准由两名专家按照临床方案达成共识确定。框架组织者在测试CSCT扫描上,按病变、动脉和患者评估了(半)自动方法的性能。

结果

评估了五种(半)自动方法。四种方法同时使用CSCT和CCTA来识别CAC,一种方法仅使用CSCT。评估的方法正确检测出52%至94%的CAC病变,阳性预测值在65%至96%之间。冠状动脉远端的病变最常被漏检,靠近冠状动脉口的主动脉钙化是最常见的假阳性错误。大多数(88%至98%)正确识别的CAC病变被分配到正确的动脉。评估方法对患者CVD风险分类的线性加权科恩kappa系数范围为0.80至1.00。

结论

描述了一个公开可用的用于评估心脏CT中CAC识别(半)自动方法的标准化框架。在此框架内对五种(半)自动方法的评估表明,按患者自动进行CVD风险分类是可行的。冠状动脉口等位置不明确的CAC病变仍然具有挑战性,但它们的检测对CVD风险判定的影响有限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验