Suppr超能文献

非心电门控低剂量胸部CT中的全自动冠状动脉钙化评分:与心电门控心脏CT的比较

Fully automatic coronary calcium scoring in non-ECG-gated low-dose chest CT: comparison with ECG-gated cardiac CT.

作者信息

Suh Young Joo, Kim Cherry, Lee June-Goo, Oh Hongmin, Kang Heejun, Kim Young-Hak, Yang Dong Hyun

机构信息

Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea.

Department of Radiology, Korea University Ansan Hospital, Ansan, South Korea.

出版信息

Eur Radiol. 2023 Feb;33(2):1254-1265. doi: 10.1007/s00330-022-09117-3. Epub 2022 Sep 13.

Abstract

OBJECTIVES

To validate an artificial intelligence (AI)-based fully automatic coronary artery calcium (CAC) scoring system on non-electrocardiogram (ECG)-gated low-dose chest computed tomography (LDCT) using multi-institutional datasets with manual CAC scoring as the reference standard.

METHODS

This retrospective study included 452 subjects from three academic institutions, who underwent both ECG-gated calcium scoring computed tomography (CSCT) and LDCT scans. For all CSCT and LDCT scans, automatic CAC scoring (CAC_auto) was performed using AI-based software, and manual CAC scoring (CAC_man) was set as the reference standard. The reliability and agreement of CAC_auto was evaluated and compared with that of CAC_man using intraclass correlation coefficients (ICCs) and Bland-Altman plots. The reliability between CAC_auto and CAC_man for CAC severity categories was analyzed using weighted kappa (κ) statistics.

RESULTS

CAC_auto on CSCT and LDCT yielded a high ICC (0.998, 95% confidence interval (CI) 0.998-0.999 and 0.989, 95% CI 0.987-0.991, respectively) and a mean difference with 95% limits of agreement of 1.3 ± 37.1 and 0.8 ± 75.7, respectively. CAC_auto achieved excellent reliability for CAC severity (κ = 0.918-0.972) on CSCT and good to excellent but heterogenous reliability among datasets (κ = 0.748-0.924) on LDCT.

CONCLUSIONS

The application of an AI-based automatic CAC scoring software to LDCT shows good to excellent reliability in CAC score and CAC severity categorization in multi-institutional datasets; however, the reliability varies among institutions.

KEY POINTS

• AI-based automatic CAC scoring on LDCT shows excellent reliability with manual CAC scoring in multi-institutional datasets. • The reliability for CAC score-based severity categorization varies among datasets. • Automatic scoring for LDCT shows a higher false-positive rate than automatic scoring for CSCT, and most common causes of a false-positive are image noise and artifacts for both CSCT and LDCT.

摘要

目的

使用多机构数据集,以手动冠状动脉钙化(CAC)评分作为参考标准,在非心电图(ECG)门控低剂量胸部计算机断层扫描(LDCT)上验证基于人工智能(AI)的全自动冠状动脉钙化评分系统。

方法

这项回顾性研究纳入了来自三个学术机构的452名受试者,他们均接受了ECG门控钙化评分计算机断层扫描(CSCT)和LDCT扫描。对于所有CSCT和LDCT扫描,使用基于AI的软件进行自动CAC评分(CAC_auto),并将手动CAC评分(CAC_man)设为参考标准。使用组内相关系数(ICC)和Bland-Altman图评估CAC_auto的可靠性和一致性,并与CAC_man进行比较。使用加权kappa(κ)统计分析CAC_auto与CAC_man在CAC严重程度分类方面的可靠性。

结果

CSCT和LDCT上的CAC_auto均产生了较高的ICC(分别为0.998,95%置信区间(CI)0.998 - 0.999和0.989,95% CI 0.987 - 0.991),平均差异及95%一致性界限分别为1.3±37.1和0.8±75.7。CSCT上的CAC_auto在CAC严重程度方面具有出色的可靠性(κ = 0.918 - 0.972),LDCT上在各数据集之间具有良好至出色但异质性的可靠性(κ = 0.748 - 0.924)。

结论

基于AI的自动CAC评分软件应用于LDCT时,在多机构数据集中的CAC评分和CAC严重程度分类方面显示出良好至出色的可靠性;然而,各机构之间的可靠性有所不同。

关键点

• 在多机构数据集中,基于AI的LDCT自动CAC评分与手动CAC评分显示出出色的可靠性。• 基于CAC评分的严重程度分类在各数据集之间的可靠性有所不同。• LDCT的自动评分比CSCT的自动评分显示出更高的假阳性率,CSCT和LDCT假阳性的最常见原因都是图像噪声和伪影。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验