Madsen Pernille M, Motti Dario, Karmally Shaffiat, Szymkowski David E, Lambertsen Kate Lykke, Bethea John R, Brambilla Roberta
The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136, Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark.
Nationwide Children's Hospital, Columbus, Ohio 43205.
J Neurosci. 2016 May 4;36(18):5128-43. doi: 10.1523/JNEUROSCI.0211-16.2016.
Tumor necrosis factor (TNF) is associated with the pathophysiology of various neurological disorders, including multiple sclerosis. It exists as a transmembrane form tmTNF, signaling via TNF receptor 2 (TNFR2) and TNFR1, and a soluble form, solTNF, signaling via TNFR1. Multiple sclerosis is associated with the detrimental effects of solTNF acting through TNFR1, while tmTNF promotes repair and remyelination. Here we demonstrate that oligodendroglial TNFR2 is a key mediator of tmTNF-dependent protection in experimental autoimmune encephalomyelitis (EAE). CNP-cre:TNFR2(fl/fl) mice with TNFR2 ablation in oligodendrocytes show exacerbation of the disease with increased axon and myelin pathology, reduced remyelination, and increased loss of oligodendrocyte precursor cells and mature oligodendrocytes. The clinical course of EAE is not improved by the solTNF inhibitor XPro1595 in CNP-cre:TNFR2(fl/fl) mice, indicating that for tmTNF to promote recovery TNFR2 in oligodendrocytes is required. We show that TNFR2 drives differentiation of oligodendrocyte precursor cells, but not proliferation or survival. TNFR2 ablation leads to dysregulated expression of microRNAs, among which are regulators of oligodendrocyte differentiation and inflammation, including miR-7a. Our data provide the first direct in vivo evidence that TNFR2 in oligodendrocytes is important for oligodendrocyte differentiation, thereby sustaining tmTNF-dependent repair in neuroimmune disease. Our studies identify TNFR2 in the CNS as a molecular target for the development of remyelinating agents, addressing the most pressing need in multiple sclerosis therapy nowadays.
Our study, using novel TNF receptor 2 (TNFR2) conditional KO mice with selective TNFR2 ablation in oligodendrocytes, provides the first direct evidence that TNFR2 is an important signal for oligodendrocyte differentiation. Following activation by transmembrane TNF, TNFR2 initiates pathways that drive oligodendrocytes into a reparative mode contributing to remyelination following disease. This identifies TNFR2 as a new molecular target for the development of therapeutic agents in multiple sclerosis.
肿瘤坏死因子(TNF)与包括多发性硬化症在内的多种神经系统疾病的病理生理学相关。它以跨膜形式tmTNF存在,通过肿瘤坏死因子受体2(TNFR2)和TNFR1进行信号传导,还以可溶性形式solTNF存在,通过TNFR1进行信号传导。多发性硬化症与solTNF通过TNFR1发挥的有害作用相关,而tmTNF促进修复和髓鞘再生。在此,我们证明少突胶质细胞TNFR2是实验性自身免疫性脑脊髓炎(EAE)中tmTNF依赖性保护的关键介质。在少突胶质细胞中敲除TNFR2的CNP-cre:TNFR2(fl/fl)小鼠表现出疾病加重,轴突和髓鞘病理增加,髓鞘再生减少,少突胶质前体细胞和成熟少突胶质细胞损失增加。在CNP-cre:TNFR2(fl/fl)小鼠中,可溶性TNF抑制剂XPro1595并未改善EAE的临床病程,这表明tmTNF促进恢复需要少突胶质细胞中的TNFR2。我们表明TNFR2驱动少突胶质前体细胞的分化,但不驱动其增殖或存活。TNFR2的敲除导致微小RNA表达失调,其中包括少突胶质细胞分化和炎症的调节因子,如miR-7a。我们的数据提供了首个直接的体内证据,即少突胶质细胞中的TNFR2对少突胶质细胞分化很重要,从而在神经免疫疾病中维持tmTNF依赖性修复。我们的研究确定中枢神经系统中的TNFR2是开发髓鞘再生剂的分子靶点,满足了当今多发性硬化症治疗中最迫切的需求。
我们的研究使用了新型肿瘤坏死因子受体2(TNFR2)条件性敲除小鼠,在少突胶质细胞中选择性敲除TNFR2,提供了首个直接证据表明TNFR2是少突胶质细胞分化的重要信号。在被跨膜TNF激活后,TNFR2启动驱动少突胶质细胞进入修复模式的途径,有助于疾病后的髓鞘再生。这确定TNFR2是多发性硬化症治疗药物开发的新分子靶点。