Suppr超能文献

一种用于寻找癌症驱动体细胞基因组改变的精确算法:加权互斥最大集合覆盖问题。

An exact algorithm for finding cancer driver somatic genome alterations: the weighted mutually exclusive maximum set cover problem.

作者信息

Lu Songjian, Mandava Gunasheil, Yan Gaibo, Lu Xinghua

机构信息

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206 USA.

出版信息

Algorithms Mol Biol. 2016 May 4;11:11. doi: 10.1186/s13015-016-0073-9. eCollection 2016.

Abstract

BACKGROUND

The mutual exclusivity of somatic genome alterations (SGAs), such as somatic mutations and copy number alterations, is an important observation of tumors and is widely used to search for cancer signaling pathways or SGAs related to tumor development. However, one problem with current methods that use mutual exclusivity is that they are not signal-based; another problem is that they use heuristic algorithms to handle the NP-hard problems, which cannot guarantee to find the optimal solutions of their models.

METHOD

In this study, we propose a novel signal-based method that utilizes the intrinsic relationship between SGAs on signaling pathways and expression changes of downstream genes regulated by pathways to identify cancer signaling pathways using the mutually exclusive property. We also present a relatively efficient exact algorithm that can guarantee to obtain the optimal solution of the new computational model.

RESULTS

We have applied our new model and exact algorithm to the breast cancer data. The results reveal that our new approach increases the capability of finding better solutions in the application of cancer research. Our new exact algorithm has a time complexity of [Formula: see text](Note: Following the recent convention, we use a star * to represent that the polynomial part of the time complexity is neglected), which has solved the NP-hard problem of our model efficiently.

CONCLUSION

Our new method and algorithm can discover the true causes behind the phenotypes, such as what SGA events lead to abnormality of the cell cycle or make the cell metastasis lose control in tumors; thus, it identifies the target candidates for precision (or target) therapeutics.

摘要

背景

体细胞基因组改变(SGA),如体细胞突变和拷贝数改变,之间的相互排斥性是肿瘤的一个重要观察结果,并且被广泛用于寻找与肿瘤发生发展相关的癌症信号通路或SGA。然而,当前使用相互排斥性的方法存在一个问题,即它们不是基于信号的;另一个问题是它们使用启发式算法来处理NP难问题,这不能保证找到其模型的最优解。

方法

在本研究中,我们提出了一种新的基于信号的方法,该方法利用信号通路上SGA之间的内在关系以及通路调控的下游基因的表达变化,通过相互排斥特性来识别癌症信号通路。我们还提出了一种相对高效的精确算法,该算法能够保证获得新计算模型的最优解。

结果

我们已将新模型和精确算法应用于乳腺癌数据。结果表明,我们的新方法在癌症研究应用中提高了找到更好解决方案的能力。我们的新精确算法的时间复杂度为[公式:见原文](注意:按照最近的惯例,我们使用星号*表示忽略时间复杂度的多项式部分),有效解决了我们模型的NP难问题。

结论

我们的新方法和算法能够发现表型背后的真正原因,例如哪些SGA事件导致肿瘤细胞周期异常或使细胞转移失控;因此,它能够识别精准(或靶向)治疗的候选靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b12b/4855522/7894f784c47b/13015_2016_73_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验