Suppr超能文献

高密度脂蛋白、线粒体功能障碍与细胞存活机制

High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms.

作者信息

White C Roger, Giordano Samantha, Anantharamaiah G M

机构信息

Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA.

Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Chem Phys Lipids. 2016 Sep;199:161-169. doi: 10.1016/j.chemphyslip.2016.04.007. Epub 2016 May 2.

Abstract

Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP.

摘要

缺血性损伤与急性心肌梗死、经皮冠状动脉介入治疗、冠状动脉旁路移植术及心脏直视手术相关。为使心脏并发症降至最低,及时恢复血流至关重要。然而,长时间缺血后的再灌注可诱发严重的心肌细胞功能障碍,线粒体是缺血/再灌注(I/R)损伤的主要靶点。活性氧(ROS)生成增加会导致线粒体呼吸复合物受损,进而引起氧化磷酸化解偶联。线粒体膜扰动也会导致钙超载、线粒体通透性转换孔(mPTP)开放以及凋亡介质释放到细胞质中。临床和实验研究表明,缺血预处理(ICPRE)和后处理(ICPOST)可减轻I/R损伤背景下的线粒体损伤并改善心脏功能。这是通过激活两个主要的细胞存活级联反应实现的:1)再灌注损伤挽救激酶(RISK)途径;2)存活激活因子增强(SAFE)途径。近期数据表明,高密度脂蛋白(HDL)模拟预处理方案的作用,并通过激活RISK和SAFE信号级联反应减轻心肌I/R损伤。在本综述中,我们讨论了HDL的主要蛋白质成分载脂蛋白A-I(apoA-I)以及与小而致密的HDL颗粒相关的溶血鞘脂鞘氨醇-1-磷酸(S1P)作为心肌细胞存活介质的作用。apoA-I和S1P均通过防止ROS依赖性损伤和抑制mPTP开放发挥梗死保护作用。

相似文献

1
High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms.
Chem Phys Lipids. 2016 Sep;199:161-169. doi: 10.1016/j.chemphyslip.2016.04.007. Epub 2016 May 2.
3
High-Density Lipoprotein Regulation of Mitochondrial Function.
Adv Exp Med Biol. 2017;982:407-429. doi: 10.1007/978-3-319-55330-6_22.
4
HDL protects against ischemia reperfusion injury by preserving mitochondrial integrity.
Atherosclerosis. 2013 May;228(1):110-6. doi: 10.1016/j.atherosclerosis.2013.02.003. Epub 2013 Feb 19.
5
The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore.
Aging Cell. 2017 Oct;16(5):943-955. doi: 10.1111/acel.12650. Epub 2017 Jul 31.
8
Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications.
Antioxid Redox Signal. 2013 Feb 10;18(5):556-99. doi: 10.1089/ars.2011.4459. Epub 2012 Jul 17.
10
Mitochondria: a target for neuroprotective interventions in cerebral ischemia-reperfusion.
Curr Pharm Des. 2006;12(6):739-57. doi: 10.2174/138161206775474242.

引用本文的文献

2
Sphingosine 1-phosphate protective effect on human proximal tubule cells submitted to an in vitro ischemia model: the role of JAK2/STAT3.
J Physiol Biochem. 2024 Nov;80(4):831-843. doi: 10.1007/s13105-024-01038-7. Epub 2024 Aug 19.
4
Inactivated protects against myocardial ischemia reperfusion injury via Nrf2 and HO-1.
Exp Ther Med. 2020 May;19(5):3362-3368. doi: 10.3892/etm.2020.8605. Epub 2020 Mar 17.
6
HDL therapy today: from atherosclerosis, to stent compatibility to heart failure.
Ann Med. 2019 Nov-Dec;51(7-8):345-359. doi: 10.1080/07853890.2019.1694695.
7
Therapeutic efficacy of cyclosporin A against spinal cord injury in rats with hyperglycemia.
Mol Med Rep. 2018 Mar;17(3):4369-4375. doi: 10.3892/mmr.2018.8422. Epub 2018 Jan 11.

本文引用的文献

1
Anti-inflammatory Function of High-Density Lipoproteins via Autophagy of IκB Kinase.
Cell Mol Gastroenterol Hepatol. 2014 Dec 26;1(2):171-187.e1. doi: 10.1016/j.jcmgh.2014.12.006. eCollection 2015 Mar.
2
Moving Forwards by Blocking Back-Flow: The Yin and Yang of MI Therapy.
Circ Res. 2016 Mar 4;118(5):898-906. doi: 10.1161/CIRCRESAHA.115.306569.
3
Sphingosine-1-phosphate reduces ischaemia-reperfusion injury by phosphorylating the gap junction protein Connexin43.
Cardiovasc Res. 2016 Mar 1;109(3):385-96. doi: 10.1093/cvr/cvw004. Epub 2016 Jan 13.
4
Identification of Critical Paraoxonase 1 Residues Involved in High Density Lipoprotein Interaction.
J Biol Chem. 2016 Jan 22;291(4):1890-1904. doi: 10.1074/jbc.M115.678334. Epub 2015 Nov 13.
6
A giant molecular proton pump: structure and mechanism of respiratory complex I.
Nat Rev Mol Cell Biol. 2015 Jun;16(6):375-88. doi: 10.1038/nrm3997. Epub 2015 May 20.
7
Improving reconstituted HDL composition for efficient post-ischemic reduction of ischemia reperfusion injury.
PLoS One. 2015 Mar 17;10(3):e0119664. doi: 10.1371/journal.pone.0119664. eCollection 2015.
9
RISK and SAFE signaling pathway involvement in apolipoprotein A-I-induced cardioprotection.
PLoS One. 2014 Sep 19;9(9):e107950. doi: 10.1371/journal.pone.0107950. eCollection 2014.
10
The pleiotropic roles of sphingolipid signaling in autophagy.
Cell Death Dis. 2014 May 22;5(5):e1245. doi: 10.1038/cddis.2014.215.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验