Suppr超能文献

拓扑域的光谱识别。

Spectral identification of topological domains.

作者信息

Chen Jie, Hero Alfred O, Rajapakse Indika

机构信息

CIAIC, School of Marine Science and Technology, Northwestern Polytechnical University, China Department of Electrical Engineering and Computer Science Department of Computational Medicine & Bioinformatics, Medical School.

Department of Electrical Engineering and Computer Science Department of Biomedical Engineering Department of Statistics.

出版信息

Bioinformatics. 2016 Jul 15;32(14):2151-8. doi: 10.1093/bioinformatics/btw221. Epub 2016 May 5.

Abstract

MOTIVATION

Topological domains have been proposed as the backbone of interphase chromosome structure. They are regions of high local contact frequency separated by sharp boundaries. Genes within a domain often have correlated transcription. In this paper, we present a computational efficient spectral algorithm to identify topological domains from chromosome conformation data (Hi-C data). We consider the genome as a weighted graph with vertices defined by loci on a chromosome and the edge weights given by interaction frequency between two loci. Laplacian-based graph segmentation is then applied iteratively to obtain the domains at the given compactness level. Comparison with algorithms in the literature shows the advantage of the proposed strategy.

RESULTS

An efficient algorithm is presented to identify topological domains from the Hi-C matrix.

AVAILABILITY AND IMPLEMENTATION

The Matlab source code and illustrative examples are available at http://bionetworks.ccmb.med.umich.edu/

CONTACT

: indikar@med.umich.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

拓扑结构域已被提出作为间期染色体结构的主干。它们是具有高局部接触频率的区域,由清晰的边界分隔。一个结构域内的基因通常具有相关转录。在本文中,我们提出了一种计算效率高的谱算法,用于从染色体构象数据(Hi-C数据)中识别拓扑结构域。我们将基因组视为一个加权图,其顶点由染色体上的位点定义,边权重由两个位点之间的相互作用频率给出。然后基于拉普拉斯的图分割被迭代应用,以获得给定紧致度水平下的结构域。与文献中的算法比较显示了所提出策略的优势。

结果

提出了一种从Hi-C矩阵中识别拓扑结构域的有效算法。

可用性和实现

Matlab源代码和示例可在http://bionetworks.ccmb.med.umich.edu/获取。

联系方式

indikar@med.umich.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
Spectral identification of topological domains.
Bioinformatics. 2016 Jul 15;32(14):2151-8. doi: 10.1093/bioinformatics/btw221. Epub 2016 May 5.
2
FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data.
Bioinformatics. 2016 Sep 1;32(17):2692-5. doi: 10.1093/bioinformatics/btw240. Epub 2016 May 3.
3
Unified representation of genetic variants.
Bioinformatics. 2015 Jul 1;31(13):2202-4. doi: 10.1093/bioinformatics/btv112. Epub 2015 Feb 19.
5
FUpred: detecting protein domains through deep-learning-based contact map prediction.
Bioinformatics. 2020 Jun 1;36(12):3749-3757. doi: 10.1093/bioinformatics/btaa217.
6
GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach.
Bioinformatics. 2015 Aug 15;31(16):2601-6. doi: 10.1093/bioinformatics/btv201. Epub 2015 Apr 16.
8
3DRobot: automated generation of diverse and well-packed protein structure decoys.
Bioinformatics. 2016 Feb 1;32(3):378-87. doi: 10.1093/bioinformatics/btv601. Epub 2015 Oct 14.
9
A hidden Markov random field-based Bayesian method for the detection of long-range chromosomal interactions in Hi-C data.
Bioinformatics. 2016 Mar 1;32(5):650-6. doi: 10.1093/bioinformatics/btv650. Epub 2015 Nov 4.

引用本文的文献

2
RobusTAD: reference panel based annotation of nested topologically associating domains.
Genome Biol. 2025 May 19;26(1):129. doi: 10.1186/s13059-025-03568-9.
4
Genome structural dynamics: insights from Gaussian network analysis of Hi-C data.
Brief Funct Genomics. 2024 Sep 27;23(5):525-537. doi: 10.1093/bfgp/elae014.
5
Identifying TAD-like domains on single-cell Hi-C data by graph embedding and changepoint detection.
Bioinformatics. 2024 Mar 4;40(3). doi: 10.1093/bioinformatics/btae138.
7
CASPIAN: A method to identify chromatin topological associated domains based on spatial density cluster.
Comput Struct Biotechnol J. 2022 Sep 5;20:4816-4824. doi: 10.1016/j.csbj.2022.08.059. eCollection 2022.
8
Deciphering multi-way interactions in the human genome.
Nat Commun. 2022 Sep 20;13(1):5498. doi: 10.1038/s41467-022-32980-z.
9
Rearrangement of T Cell genome architecture regulates GVHD.
iScience. 2022 Aug 6;25(9):104846. doi: 10.1016/j.isci.2022.104846. eCollection 2022 Sep 16.
10
Hodge theory-based biomolecular data analysis.
Sci Rep. 2022 Jun 11;12(1):9699. doi: 10.1038/s41598-022-12877-z.

本文引用的文献

1
Functional organization of the human 4D Nucleome.
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8002-7. doi: 10.1073/pnas.1505822112. Epub 2015 Jun 15.
2
Chromosome conformation of human fibroblasts grown in 3-dimensional spheroids.
Nucleus. 2015;6(1):55-65. doi: 10.1080/19491034.2014.1003745.
3
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell. 2014 Dec 18;159(7):1665-80. doi: 10.1016/j.cell.2014.11.021. Epub 2014 Dec 11.
4
Topologically associating domains are stable units of replication-timing regulation.
Nature. 2014 Nov 20;515(7527):402-5. doi: 10.1038/nature13986.
6
Two-dimensional segmentation for analyzing Hi-C data.
Bioinformatics. 2014 Sep 1;30(17):i386-92. doi: 10.1093/bioinformatics/btu443.
8
The 3D genome in transcriptional regulation and pluripotency.
Cell Stem Cell. 2014 Jun 5;14(6):762-75. doi: 10.1016/j.stem.2014.05.017.
9
Identification of alternative topological domains in chromatin.
Algorithms Mol Biol. 2014 May 3;9:14. doi: 10.1186/1748-7188-9-14. eCollection 2014.
10
Revealing long-range interconnected hubs in human chromatin interaction data using graph theory.
Phys Rev Lett. 2013 Sep 13;111(11):118102. doi: 10.1103/PhysRevLett.111.118102. Epub 2013 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验