Coleman C Norman, Higgins Geoff S, Brown J Martin, Baumann Michael, Kirsch David G, Willers Henning, Prasanna Pataje G S, Dewhirst Mark W, Bernhard Eric J, Ahmed Mansoor M
Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), NIH, Bethesda, Maryland.
Cancer Research UK/Medical Research Council, Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom.
Clin Cancer Res. 2016 Jul 1;22(13):3138-47. doi: 10.1158/1078-0432.CCR-16-0069. Epub 2016 May 6.
There is an urgent need to improve reproducibility and translatability of preclinical data to fully exploit opportunities for molecular therapeutics involving radiation and radiochemotherapy. For in vitro research, the clonogenic assay remains the current state-of-the-art of preclinical assays, whereas newer moderate and high-throughput assays offer the potential for rapid initial screening. Studies of radiation response modification by molecularly targeted agents can be improved using more physiologic 3D culture models. Elucidating effects on the cancer stem cells (CSC, and CSC-like) and developing biomarkers for defining targets and measuring responses are also important. In vivo studies are necessary to confirm in vitro findings, further define mechanism of action, and address immunomodulation and treatment-induced modification of the microenvironment. Newer in vivo models include genetically engineered and patient-derived xenograft mouse models and spontaneously occurring cancers in domesticated animals. Selection of appropriate endpoints is important for in vivo studies; for example, regrowth delay measures bulk tumor killing, whereas local tumor control assesses effects on CSCs. The reliability of individual assays requires standardization of procedures and cross-laboratory validation. Radiation modifiers must be tested as part of clinical standard of care, which includes radiochemotherapy for most tumors. Radiation models are compatible with but also differ from those used for drug screening. Furthermore, the mechanism of a drug as a chemotherapeutic agent may be different from its interaction with radiation and/or radiochemotherapy. This provides an opportunity to expand the use of molecular-targeted agents. Clin Cancer Res; 22(13); 3138-47. ©2016 AACR.
迫切需要提高临床前数据的可重复性和可转化性,以充分利用涉及放疗和放化疗的分子疗法的机会。对于体外研究,克隆形成试验仍是当前临床前试验的最先进方法,而更新的中高通量试验为快速初步筛选提供了潜力。使用更具生理特性的三维培养模型可以改进对分子靶向药物辐射反应修饰的研究。阐明对癌症干细胞(CSC及CSC样细胞)的影响并开发用于定义靶点和测量反应的生物标志物也很重要。体内研究对于确认体外研究结果、进一步明确作用机制以及解决免疫调节和治疗诱导的微环境改变是必要的。新的体内模型包括基因工程和患者来源的异种移植小鼠模型以及家养动物中自发发生的癌症。选择合适的终点对于体内研究很重要;例如,再生长延迟衡量大块肿瘤杀伤情况,而局部肿瘤控制评估对CSC的影响。各个试验的可靠性需要程序标准化和跨实验室验证。辐射修饰剂必须作为临床标准治疗的一部分进行测试,这包括对大多数肿瘤进行放化疗。辐射模型与药物筛选所用模型兼容但也有所不同。此外,一种药物作为化疗药物的机制可能与其与放疗和/或放化疗的相互作用不同。这为扩大分子靶向药物的应用提供了机会。《临床癌症研究》;22(13);3138 - 47。©2016美国癌症研究协会。