Suppr超能文献

构建常见围产期结局的因果图:益处、局限性及以孕期使用母体抗抑郁药为例的激励性示例

Constructing Causal Diagrams for Common Perinatal Outcomes: Benefits, Limitations and Motivating Examples with Maternal Antidepressant Use in Pregnancy.

作者信息

Bandoli Gretchen, Palmsten Kristin, Flores Katrina F, Chambers Christina D

机构信息

Department of Pediatrics, University of California, San Diego, La Jolla, CA.

Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA.

出版信息

Paediatr Perinat Epidemiol. 2016 Sep;30(5):521-8. doi: 10.1111/ppe.12302. Epub 2016 May 10.

Abstract

BACKGROUND

Covariate selection to reduce bias in observational data analysis has primarily relied upon statistical criteria to guide researchers. This approach may lead researchers to condition on variables that ultimately increase bias in the effect estimates. The use of directed acyclic graphs (DAGs) aids researchers in constructing thoughtful models based on hypothesised biologic mechanisms to produce the least biased effect estimates possible.

METHODS

After providing an overview of different relations in DAGs and the prevailing mechanisms by which conditioning on variables increases or reduces bias in a model, we illustrate examples of DAGs for maternal antidepressants in pregnancy and four separate perinatal outcomes.

RESULTS

By comparing and contrasting the diagrams for maternal antidepressant use in pregnancy and spontaneous abortion, major malformations, preterm birth, and postnatal growth, we illustrate the different conditioning sets required for each model. Moreover, we illustrate why it is not appropriate to condition on the same set of covariates for the same exposure and different perinatal outcomes. We further discuss potential selection biases, overadjustment of mediators on the causal path, and sufficient sets of conditioning variables.

CONCLUSION

In our efforts to construct parsimonious models that minimise confounding and selection biases, we must rely upon our scientific knowledge of the causal mechanism. By structuring data collection and analysis around hypothesised DAGs, we ultimately aim to validly estimate the causal effect of interest.

摘要

背景

在观察性数据分析中,用于减少偏差的协变量选择主要依靠统计标准来指导研究人员。这种方法可能会导致研究人员基于最终会增加效应估计偏差的变量进行条件设定。使用有向无环图(DAG)有助于研究人员根据假设的生物学机制构建周全的模型,以产生尽可能无偏差的效应估计。

方法

在概述了DAG中的不同关系以及基于变量进行条件设定增加或减少模型偏差的主要机制之后,我们展示了孕期母亲使用抗抑郁药及四种不同围产期结局的DAG示例。

结果

通过比较和对比孕期母亲使用抗抑郁药与自然流产、重大畸形、早产和出生后生长的图表,我们展示了每个模型所需的不同条件集。此外,我们说明了为何对于相同暴露和不同围产期结局,基于同一组协变量进行条件设定是不合适的。我们还进一步讨论了潜在的选择偏差、因果路径中介变量的过度调整以及充分的条件变量集。

结论

在构建简约模型以尽量减少混杂和选择偏差的过程中,我们必须依靠对因果机制的科学认识。通过围绕假设的DAG构建数据收集和分析,我们最终旨在有效估计感兴趣的因果效应。

相似文献

3
Causal Diagrams: Pitfalls and Tips.因果图:陷阱与技巧。
J Epidemiol. 2020 Apr 5;30(4):153-162. doi: 10.2188/jea.JE20190192. Epub 2020 Feb 1.
6
Model Averaging for Improving Inference from Causal Diagrams.用于改进因果图推断的模型平均法。
Int J Environ Res Public Health. 2015 Aug 11;12(8):9391-407. doi: 10.3390/ijerph120809391.

引用本文的文献

1
The relationship between crowding in the delivery ward and the risk of postpartum hemorrhage.产房拥挤与产后出血风险之间的关系。
Acta Obstet Gynecol Scand. 2025 Jul;104(7):1295-1303. doi: 10.1111/aogs.15137. Epub 2025 Apr 27.

本文引用的文献

3
Effects of gestational age at enrollment in pregnancy exposure registries.纳入妊娠暴露登记时的孕周影响。
Pharmacoepidemiol Drug Saf. 2015 Apr;24(4):343-52. doi: 10.1002/pds.3731. Epub 2015 Feb 20.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验