Bandoli Gretchen, Palmsten Kristin, Flores Katrina F, Chambers Christina D
Department of Pediatrics, University of California, San Diego, La Jolla, CA.
Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA.
Paediatr Perinat Epidemiol. 2016 Sep;30(5):521-8. doi: 10.1111/ppe.12302. Epub 2016 May 10.
BACKGROUND: Covariate selection to reduce bias in observational data analysis has primarily relied upon statistical criteria to guide researchers. This approach may lead researchers to condition on variables that ultimately increase bias in the effect estimates. The use of directed acyclic graphs (DAGs) aids researchers in constructing thoughtful models based on hypothesised biologic mechanisms to produce the least biased effect estimates possible. METHODS: After providing an overview of different relations in DAGs and the prevailing mechanisms by which conditioning on variables increases or reduces bias in a model, we illustrate examples of DAGs for maternal antidepressants in pregnancy and four separate perinatal outcomes. RESULTS: By comparing and contrasting the diagrams for maternal antidepressant use in pregnancy and spontaneous abortion, major malformations, preterm birth, and postnatal growth, we illustrate the different conditioning sets required for each model. Moreover, we illustrate why it is not appropriate to condition on the same set of covariates for the same exposure and different perinatal outcomes. We further discuss potential selection biases, overadjustment of mediators on the causal path, and sufficient sets of conditioning variables. CONCLUSION: In our efforts to construct parsimonious models that minimise confounding and selection biases, we must rely upon our scientific knowledge of the causal mechanism. By structuring data collection and analysis around hypothesised DAGs, we ultimately aim to validly estimate the causal effect of interest.
背景:在观察性数据分析中,用于减少偏差的协变量选择主要依靠统计标准来指导研究人员。这种方法可能会导致研究人员基于最终会增加效应估计偏差的变量进行条件设定。使用有向无环图(DAG)有助于研究人员根据假设的生物学机制构建周全的模型,以产生尽可能无偏差的效应估计。 方法:在概述了DAG中的不同关系以及基于变量进行条件设定增加或减少模型偏差的主要机制之后,我们展示了孕期母亲使用抗抑郁药及四种不同围产期结局的DAG示例。 结果:通过比较和对比孕期母亲使用抗抑郁药与自然流产、重大畸形、早产和出生后生长的图表,我们展示了每个模型所需的不同条件集。此外,我们说明了为何对于相同暴露和不同围产期结局,基于同一组协变量进行条件设定是不合适的。我们还进一步讨论了潜在的选择偏差、因果路径中介变量的过度调整以及充分的条件变量集。 结论:在构建简约模型以尽量减少混杂和选择偏差的过程中,我们必须依靠对因果机制的科学认识。通过围绕假设的DAG构建数据收集和分析,我们最终旨在有效估计感兴趣的因果效应。
J Epidemiol. 2020-2-1
Cochrane Database Syst Rev. 2022-2-1
Gesundheitswesen. 2011-12
Int J Environ Res Public Health. 2015-8-11
Epidemiol Methods. 2017-12
J Clin Psychiatry. 2006-8
Acta Obstet Gynecol Scand. 2025-7
Am J Epidemiol. 2015-4-15
Nat Methods. 2015-3
Pharmacoepidemiol Drug Saf. 2015-4
N Engl J Med. 2014-6-19
Pharmacoepidemiol Drug Saf. 2014-8
Am J Epidemiol. 2012-10-25