文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

因果图:陷阱与技巧。

Causal Diagrams: Pitfalls and Tips.

机构信息

Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University.

Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science.

出版信息

J Epidemiol. 2020 Apr 5;30(4):153-162. doi: 10.2188/jea.JE20190192. Epub 2020 Feb 1.


DOI:10.2188/jea.JE20190192
PMID:32009103
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7064555/
Abstract

Graphical models are useful tools in causal inference, and causal directed acyclic graphs (DAGs) are used extensively to determine the variables for which it is sufficient to control for confounding to estimate causal effects. We discuss the following ten pitfalls and tips that are easily overlooked when using DAGs: 1) Each node on DAGs corresponds to a random variable and not its realized values; 2) The presence or absence of arrows in DAGs corresponds to the presence or absence of individual causal effect in the population; 3) "Non-manipulable" variables and their arrows should be drawn with care; 4) It is preferable to draw DAGs for the total population, rather than for the exposed or unexposed groups; 5) DAGs are primarily useful to examine the presence of confounding in distribution in the notion of confounding in expectation; 6) Although DAGs provide qualitative differences of causal structures, they cannot describe details of how to adjust for confounding; 7) DAGs can be used to illustrate the consequences of matching and the appropriate handling of matched variables in cohort and case-control studies; 8) When explicitly accounting for temporal order in DAGs, it is necessary to use separate nodes for each timing; 9) In certain cases, DAGs with signed edges can be used in drawing conclusions about the direction of bias; and 10) DAGs can be (and should be) used to describe not only confounding bias but also other forms of bias. We also discuss recent developments of graphical models and their future directions.

摘要

图形模型是因果推断中的有用工具,有向无环图(DAG)被广泛用于确定需要控制混杂因素以估计因果效应的变量。我们讨论了在使用 DAG 时容易忽略的以下十个陷阱和技巧:1)DAG 上的每个节点对应一个随机变量,而不是其实现值;2)DAG 中箭头的存在或不存在对应于人群中个体因果效应的存在或不存在;3)“不可操纵”变量及其箭头应谨慎绘制;4)最好为总人群绘制 DAG,而不是为暴露或未暴露组绘制;5)DAG 主要用于检查预期混杂中分布混杂的存在;6)尽管 DAG 提供了因果结构的定性差异,但它们不能描述如何调整混杂的细节;7)DAG 可用于说明匹配的后果以及在队列和病例对照研究中如何正确处理匹配变量;8)在 DAG 中明确考虑时间顺序时,有必要为每个时间点使用单独的节点;9)在某些情况下,可以使用带有符号边的 DAG 来得出关于偏差方向的结论;10)DAG 可以(并且应该)用于描述混杂偏差以及其他形式的偏差。我们还讨论了图形模型的最新发展及其未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/dd8a88e96988/je-30-153-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/2a69b3e406e1/je-30-153-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/ffb30abd26a4/je-30-153-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/9a07bfcba7d7/je-30-153-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/78bf386de386/je-30-153-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/deebe338815b/je-30-153-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/dd8a88e96988/je-30-153-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/2a69b3e406e1/je-30-153-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/ffb30abd26a4/je-30-153-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/9a07bfcba7d7/je-30-153-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/78bf386de386/je-30-153-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/deebe338815b/je-30-153-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc68/7064555/dd8a88e96988/je-30-153-g006.jpg

相似文献

[1]
Causal Diagrams: Pitfalls and Tips.

J Epidemiol. 2020-2-1

[2]
[Causal Inference in Medicine Part II. Directed acyclic graphs--a useful method for confounder selection, categorization of potential biases, and hypothesis specification].

Nihon Eiseigaku Zasshi. 2009-9

[3]
Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations.

Int J Epidemiol. 2021-5-17

[4]
Reducing bias in pelvic floor disorders research: using directed acyclic graphs as an aid.

Neurourol Urodyn. 2011-8-8

[5]
Evidence synthesis for constructing directed acyclic graphs (ESC-DAGs): a novel and systematic method for building directed acyclic graphs.

Int J Epidemiol. 2020-2-1

[6]
[Directed acyclic graphs (DAGs) - the application of causal diagrams in epidemiology].

Gesundheitswesen. 2011-12

[7]
Causal directed acyclic graphs and the direction of unmeasured confounding bias.

Epidemiology. 2008-9

[8]
[Causality in objective world: Directed Acyclic Graphs-based structural parsing].

Zhonghua Liu Xing Bing Xue Za Zhi. 2018-1-10

[9]
Directed Acyclic Graphs for Oral Disease Research.

J Dent Res. 2016-7

[10]
Combining directed acyclic graphs and the change-in-estimate procedure as a novel approach to adjustment-variable selection in epidemiology.

BMC Med Res Methodol. 2012-10-11

引用本文的文献

[1]
Unraveling Causality: Innovations in Epidemiologic Methods.

JMA J. 2025-4-28

[2]
Illustrating the structures of bias from immortal time using directed acyclic graphs.

Int J Epidemiol. 2024-12-16

[3]
New Special Article Series: "Methodological Tutorial Series for Epidemiological Studies".

J Epidemiol. 2025

[4]
Methods in causal inference. Part 4: confounding in experiments.

Evol Hum Sci. 2024-9-27

[5]
Social Relationships and Tooth Loss in Adults Aged 60 Years and Older: A Systematic Review and Meta-Analysis.

Community Dent Oral Epidemiol. 2025-8

[6]
How to develop causal directed acyclic graphs for observational health research: a scoping review.

Health Psychol Rev. 2025-3

[7]
Can algorithms replace expert knowledge for causal inference? A case study on novice use of causal discovery.

Am J Epidemiol. 2025-5-7

[8]
Causal inference and machine learning in endocrine epidemiology.

Endocr J. 2024-10-1

[9]
Levels of evidence for human system risk evaluation.

NPJ Microgravity. 2024-3-20

[10]
Athletic Injury Research: Frameworks, Models and the Need for Causal Knowledge.

Sports Med. 2024-5

本文引用的文献

[1]
Misuse of Regression Adjustment for Additional Confounders Following Insufficient Propensity Score Balancing.

Epidemiology. 2019-7

[2]
Principles of confounder selection.

Eur J Epidemiol. 2019-3-6

[3]
Graphical Models for Quasi-experimental Designs.

Sociol Methods Res. 2017-3

[4]
Canonical Causal Diagrams to Guide the Treatment of Missing Data in Epidemiologic Studies.

Am J Epidemiol. 2018-12-1

[5]
Mechanisms and uncertainty in randomized controlled trials: A commentary on Deaton and Cartwright.

Soc Sci Med. 2018-8

[6]
On Well-defined Hypothetical Interventions in the Potential Outcomes Framework.

Epidemiology. 2018-7

[7]
A Practical Example Demonstrating the Utility of Single-world Intervention Graphs.

Epidemiology. 2018-5

[8]
Covariate balance for no confounding in the sufficient-cause model.

Ann Epidemiol. 2017-11-23

[9]
Case-control matching: effects, misconceptions, and recommendations.

Eur J Epidemiol. 2017-11-3

[10]
Re: Biases in Randomized Trials: A Conversation Between Trialists and Epidemiologists.

Epidemiology. 2017-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索