Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University.
Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science.
J Epidemiol. 2020 Apr 5;30(4):153-162. doi: 10.2188/jea.JE20190192. Epub 2020 Feb 1.
Graphical models are useful tools in causal inference, and causal directed acyclic graphs (DAGs) are used extensively to determine the variables for which it is sufficient to control for confounding to estimate causal effects. We discuss the following ten pitfalls and tips that are easily overlooked when using DAGs: 1) Each node on DAGs corresponds to a random variable and not its realized values; 2) The presence or absence of arrows in DAGs corresponds to the presence or absence of individual causal effect in the population; 3) "Non-manipulable" variables and their arrows should be drawn with care; 4) It is preferable to draw DAGs for the total population, rather than for the exposed or unexposed groups; 5) DAGs are primarily useful to examine the presence of confounding in distribution in the notion of confounding in expectation; 6) Although DAGs provide qualitative differences of causal structures, they cannot describe details of how to adjust for confounding; 7) DAGs can be used to illustrate the consequences of matching and the appropriate handling of matched variables in cohort and case-control studies; 8) When explicitly accounting for temporal order in DAGs, it is necessary to use separate nodes for each timing; 9) In certain cases, DAGs with signed edges can be used in drawing conclusions about the direction of bias; and 10) DAGs can be (and should be) used to describe not only confounding bias but also other forms of bias. We also discuss recent developments of graphical models and their future directions.
图形模型是因果推断中的有用工具,有向无环图(DAG)被广泛用于确定需要控制混杂因素以估计因果效应的变量。我们讨论了在使用 DAG 时容易忽略的以下十个陷阱和技巧:1)DAG 上的每个节点对应一个随机变量,而不是其实现值;2)DAG 中箭头的存在或不存在对应于人群中个体因果效应的存在或不存在;3)“不可操纵”变量及其箭头应谨慎绘制;4)最好为总人群绘制 DAG,而不是为暴露或未暴露组绘制;5)DAG 主要用于检查预期混杂中分布混杂的存在;6)尽管 DAG 提供了因果结构的定性差异,但它们不能描述如何调整混杂的细节;7)DAG 可用于说明匹配的后果以及在队列和病例对照研究中如何正确处理匹配变量;8)在 DAG 中明确考虑时间顺序时,有必要为每个时间点使用单独的节点;9)在某些情况下,可以使用带有符号边的 DAG 来得出关于偏差方向的结论;10)DAG 可以(并且应该)用于描述混杂偏差以及其他形式的偏差。我们还讨论了图形模型的最新发展及其未来方向。
J Epidemiol. 2020-2-1
Neurourol Urodyn. 2011-8-8
Gesundheitswesen. 2011-12
Epidemiology. 2008-9
Zhonghua Liu Xing Bing Xue Za Zhi. 2018-1-10
J Dent Res. 2016-7
JMA J. 2025-4-28
Int J Epidemiol. 2024-12-16
Evol Hum Sci. 2024-9-27
Community Dent Oral Epidemiol. 2025-8
Health Psychol Rev. 2025-3
Endocr J. 2024-10-1
NPJ Microgravity. 2024-3-20
Eur J Epidemiol. 2019-3-6
Sociol Methods Res. 2017-3
Am J Epidemiol. 2018-12-1
Epidemiology. 2018-7
Ann Epidemiol. 2017-11-23
Eur J Epidemiol. 2017-11-3