Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.
J Cell Physiol. 2017 Jan;232(1):19-26. doi: 10.1002/jcp.25420. Epub 2016 Jun 2.
The extracellular matrix (ECM) determines 3D tissue architecture and provides structural support and chemical and mechanical cues to the cells. Atomic force microscopy (AFM) has unique capabilities to measure ECM mechanics at the scale at which cells probe the mechanical features of their microenvironment. Moreover, AFM measurements can be readily combined with bright field and fluorescence microscopy. Performing reliable mechanical measurements with AFM requires accurate calibration of the device and correct computation of the mechanical parameters. A suitable approach to isolate ECM mechanics from cell contribution is removing the cells by means of an effective decellularization process that preserves the composition, structure and mechanical properties of the ECM. AFM measurement of ECM micromechanics provides important insights into organ biofabrication, cell-matrix mechanical crosstalk and disease-induced tissue stiffness alterations. J. Cell. Physiol. 232: 19-26, 2017. © 2016 Wiley Periodicals, Inc.
细胞外基质(ECM)决定了 3D 组织架构,并为细胞提供结构支撑以及化学和机械线索。原子力显微镜(AFM)具有独特的能力,可在细胞探测其微环境力学特征的尺度上测量 ECM 力学。此外,AFM 测量可以很容易地与明场和荧光显微镜结合使用。使用 AFM 进行可靠的力学测量需要对设备进行精确校准,并正确计算力学参数。一种从细胞贡献中分离 ECM 力学的合适方法是通过有效的脱细胞化过程去除细胞,该过程可保留 ECM 的组成、结构和力学性能。AFM 对 ECM 微观力学的测量为器官生物制造、细胞-基质力学相互作用以及疾病引起的组织硬度变化提供了重要的见解。J. Cell. Physiol. 232:19-26, 2017. © 2016 Wiley Periodicals, Inc.